
Master’s thesis

A Comparison of Classical and
Machine Learning Based
Approaches to Topology
Optimization

Emilie Dørum

Computational Physics
60 ECTS study points

Department of Physics
Faculty of Mathematics and Natural Sciences

Spring 2024

Emilie Dørum

A Comparison of Classical and
Machine Learning Based
Approaches to Topology

Optimization

Supervisors:
Morten Hjorth-Jensen
Thomas M. Surowiec

Henrik Finsberg

Abstract

How to create designs that are optimal with respect to some metric is
an important topic in the field of engineering. This is called topology
optimization, and is typically done using an iterative minimization algorithm,
where, for each iteration, a set of partial differential equations (PDEs) are
solved using the finite element method (FEM). However, this approach is
computationally expensive for large-scale topology optimization. For this
reason, with the rise of the field of artificial intelligence, a new approach
might be to use a neural network to approximate the PDEs, hopefully making
each iteration less computationally expensive. To see if this new approach
shows promise, we have developed a fast and flexible program that can solve
topology optimization problems, available from the GitHub repository linked
to in appendix A. We have used this program to compare the FEM to
a specific neural network based approach called the deep energy method
(DEM) by comparing their performance on topology optimization problems
based on both the equations of linear elasticity and the Stokes equations.
We have made, to the best of our knowledge, three novel contributions; we
have extended the DEM implementation in [24] to work with the Stokes
equations, we have used a new topology optimization algorithm described
in [25] to solve Stokes based topology optimization, and we have combined
the DEM implementation with the new algorithm. Using our program, we
found that, for linear elasticity, our FEM implementation is faster than our
DEM implementation for a rough mesh, but significantly slower for a fine
mesh. We have also found that increasing the mesh size improves the FEM
result, but makes the DEM result worse. For Stokes flow, our novel FEM-
based solver proved to be very fast and gave results comparable to those from
the existing literature, while our novel DEM-based solver did not work well
enough to be useful in any way. The only clear advantage we have found the
DEM to have is that it has an almost constant time complexity, so it can
solve topology optimization problems on very fine meshes significantly faster
than the FEM. This benefit is however rendered moot by the fact that the
DEM gives worse results as the mesh becomes finer, making the usefulness
of the DEM for topology optimization questionable.

i

ii

Contents

1 Introduction . 1

2 Preliminary Results . 3

2.1 Notation . 3

2.2 The Weak Form . 3

2.3 The Energy Functional. 5

3 Introduction to Topology Optimization 7

3.1 Topology Optimization of Elastic Materials 8

3.1.1 Linear Elasticity 8

3.1.2 Linear Elasticity with Varying Density 10

3.1.3 Elasticity Optimization Examples. 10

3.2 Topology Optimization of Fluids 12

3.2.1 Stokes Flow 12

3.2.2 Stokes Flow with Varying Permeability 14

3.2.3 Fluid Optimization Examples 15

4 Methods . 19

4.1 Entropic Mirror Descent 19

4.2 Finite Element Approach 21

4.2.1 The Finite Element Method 21

4.2.2 Linear Algebra Solvers 25

4.3 Neural Network Approach 26

4.3.1 Deep Neural Networks 26

4.3.2 Physics-Informed Neural Networks 28

4.3.3 The Deep Energy Method 28

4.3.4 The DEM and Stokes Flow 31

4.3.5 Numerical Integration 31

5 Implementation . 37

5.1 src . 37

5.2 FEM_src . 40

5.3 DEM_src . 43

5.4 Testing. 48

iii

Contents

6 Results and Comparisons . 51
6.1 Hyperparameters. 51
6.2 Results . 52
6.3 Comparison Indices. 53
6.4 Comparison. 56

6.4.1 Convergence 56
6.4.2 Figures . 57
6.4.3 Objectives . 60
6.4.4 Speed. 64
6.4.5 Mesh Independence 66

6.5 General Discussion . 67
7 Conclusion . 73
A Link to Our Source Code . 79
B Gradient Calculation . 81
C Bugs in The DEM Source Code 83

iv

List of Figures

3.1 Typical stress vs. strain diagram for a ductile material (e.g. steel). Image is
downloaded from commons.wikimedia.org/wiki/File: Stress_strain_ductile.svg.
. 9

3.2 Figure of the cantilever beam we are going to optimize. Based on figure 6.2
from [25]. 11

3.3 Figure of the short cantilever beam we are going to optimize. Based on an
example from [24]. 12

3.4 Figure of the bridge we are going to optimize. Based on an example from [24]. 12
3.5 Figure of the diffuser we are going to optimize. From figure 4 in [8]. 16
3.6 Figure of the pipe bend we are going to optimize. From figure 6 in [8]. . . . 17
3.7 Figure of the twin pipe we are going to optimize. From figure 10 in [8]. . . . 17

4.1 A figure comparing the analytical solution of the differential equation f ′′(x) =
−8, f(0) = f(1) = 0 with a numerical approximation using the finite element
method. The solid blue line is the analytical solution, and the striped orange
line is the numerical approximation. The light gray triangles show the nodal
basis functions, with various line styles to differentiate the different functions. 23

4.2 Figure depicting the type of triangulation of a 2D rectangular domain we will
use when solving PDEs with the finite element method. 24

4.3 Figure depicting the two-dimensional hat function φi on a triangular mesh.
From figure 3.4 in [27], with some small modifications. 25

4.4 Figure depicting a fully connected deep neural network. From figure 1 in [24],
with some small modifications. 27

4.5 Figure depicting underfitting and overfitting of polynomial approximations,
the blue curves, to a sinusoidal function, the orange curve. Downloaded
from https://compphysics.github.io/MachineLearning/doc/LectureNotes/_build/
html/_images/chapter3_64_1.png. 27

4.6 The three types of intersections you need to keep track of to approximate circle
areas with triangles. The green point p1 is where the circle enters the surface,
and the red point p2 is where the circle exits the surface. The c-points are the
corner points needed to construct the triangles. 34

4.7 Figure depicting the triangular approximations of the area of a grid face a circle
covers. Red triangles represent negative area. The black dots on the boundary
show where the circle boundary intersects the grid, and the black dot inside the
circle is located at its center. 35

5.1 A figure depicting a log-log plot of the filter error as a function of N from the
HelmholtzFilter test. The convergence rate of the filter error is also depicted.
. 49

v

https://commons.wikimedia.org/wiki/File:Stress_strain_ductile.svg
https://compphysics.github.io/MachineLearning/doc/LectureNotes/_build/html/ _images/chapter3_64_1.png
https://compphysics.github.io/MachineLearning/doc/LectureNotes/_build/html/ _images/chapter3_64_1.png

List of Figures

5.2 A figure depicting a log-log plot of the error as a function of N from the
ObjectiveCalculator test. The convergence rate of the error is also
depicted. 50

6.1 Figure showing the fluid velocities for the diffuser with N = 40 and ρ = 0.5
for different penalization parameters τ . Figure 6.1a shows τ = 100, figure
6.1b shows τ = 10000, and figure 6.1c shows τ = 500. Fluid velocities are
compared to those from the FEM, and both the error in the direction of the
velocities, calculated with 1

2 −
uF EM ·uDEM

2||uF EM || ||uDEM || , and error in the magnitude of

the velocities, calculated with
∣∣||uF EM || − ||uDEM ||

∣∣, are shown. 53

6.2 Figures showcasing the optimized topologies, using the FEM, for three linear
elasticity examples; the cantilever shown in 6.2a, the short cantilever shown in
6.2b, and the bridge shown in 6.2c. In all three examples, the discretization
parameter N = 40 is used. A density of 1, indicating presence of material, is
shown in black, and a density of 0, indicating absence of material, is shown in
white. Intermediate values are highlighted by coloring densities around 0.5 in
red. 54

6.3 Figures showcasing the optimized topologies, using the FEM, for three linear
elasticity examples; the cantilever shown in 6.3a, the short cantilever shown in
6.3b, and the bridge shown in 6.3c. In all three examples, the discretization
parameter N = 160 is used. A density of 1, indicating presence of material, is
shown in black, and a density of 0, indicating absence of material, is shown in
white. Intermediate values are highlighted by coloring densities around 0.5 in
red. 55

6.4 Figures showcasing the optimized topologies, using the FEM, for three Stokes
flow examples; the diffuser shown in 6.4a, the pipe bend shown in 6.4b, and
the twin pipe shown in 6.4c. In all three examples, the discretization parameter
N = 40 is used. A density of 1, indicating presence of fluid, is shown in blue,
and a density of 0, indicating absence of fluid, is shown in red. Intermediate
values are highlighted by coloring densities around 0.5 in white. 56

6.5 Figures showcasing the optimized topologies, using the FEM, for three Stokes
flow examples; the diffuser shown in 6.5a, the pipe bend shown in 6.5b, and
the twin pipe shown in 6.5c. In all three examples, the discretization parameter
N = 160 is used. A density of 1, indicating presence of fluid, is shown in blue,
and a density of 0, indicating absence of fluid, is shown in red. Intermediate
values are highlighted by coloring densities around 0.5 in white. 57

6.6 Figures showcasing the optimized topologies, using the DEM, for three linear
elasticity examples; the cantilever shown in 6.6a, the short cantilever shown in
6.6b, and the bridge shown in 6.6c. In all three examples, the discretization
parameter N = 40 is used. A density of 1, indicating presence of material, is
shown in black, and a density of 0, indicating absence of material, is shown in
white. Intermediate values are highlighted by coloring densities around 0.5 in
red. 59

vi

List of Figures

6.7 Figures showcasing the optimized topologies, using the DEM, for three linear
elasticity examples; the cantilever shown in 6.7a, the short cantilever shown in
6.7b, and the bridge shown in 6.7c. In all three examples, the discretization
parameter N = 160 is used. A density of 1, indicating presence of material, is
shown in black, and a density of 0, indicating absence of material, is shown in
white. Intermediate values are highlighted by coloring densities around 0.5 in
red. 60

6.8 Figures showcasing the optimized topologies, using the DEM, for three Stokes
flow examples; the diffuser shown in 6.8a, the pipe bend shown in 6.8b, and
the twin pipe shown in 6.8c. In all three examples, the discretization parameter
N = 40 is used. A density of 1, indicating presence of fluid, is shown in blue,
and a density of 0, indicating absence of fluid, is shown in red. Intermediate
values are highlighted by coloring densities around 0.5 in white. 62

6.9 Figures showcasing the optimized topologies, using the DEM, for three Stokes
flow examples; the diffuser shown in 6.9a, the pipe bend shown in 6.9b, and
the twin pipe shown in 6.9c. In all three examples, the discretization parameter
N = 160 is used. A density of 1, indicating presence of fluid, is shown in blue,
and a density of 0, indicating absence of fluid, is shown in red. Intermediate
values are highlighted by coloring densities around 0.5 in white. 63

6.10 Figures showcasing the optimized topologies for three linear elasticity
examples; the cantilever shown in 6.10a, the short cantilever shown in 6.10b,
and the bridge shown in 6.10c. The cantilever comes from figure 6.4 from
[25], where the FEM was used, and we have added a gray border to show Ω.
The short cantilever and bridge comes from figure 2 and 3 in [24], where the
DEM was used. The cantilever used the discretization parameter h = 1/128,
corresponding to N = 128. The short cantilever used a 91-by-46 grid,
corresponding to N = 45. The bridge used an 121-by-31 grid, which results in
a rectangular grid, and therefore no singular N value. Instead, it has Nx = 30
and Ny = 20 in the x-direction and y-direction respectively. A density of 1,
indicating presence of material, is shown in black, and a density of 0, indicating
absence of material, is shown in white. Intermediate values are not highlighted,
they are instead shown as shades of gray. 65

6.11 Figures showcasing the optimized topologies for three Stokes flow examples;
the diffuser shown in 6.11a, the pipe bend shown in 6.11b, and the twin pipe
shown in 6.11c. All three figures are from [8], where the FEM was used. The
diffuser comes from figure 5, the pipe bend from figure 7 and the twin pipe
from figure 11. In all three examples, the discretization parameter N = 100
was used. A density of 1, indicating presence of fluid, is shown in white, and a
density of 0, indicating absence of fluid, is shown in black. Intermediate values
are not highlighted, they are instead shown as shades of gray. 66

6.12 A figure of the optimized design of the bridge example using the DEM limited
to 80 iterations and with N = 30. 69

6.13 A figure showcasing the intermediate designs when optimizing the short
cantilever with the DEM and N = 40. 70

6.14 A figure of the optimized design for the short cantilever that you get when
running the source code provided by [24]. 70

vii

List of Figures

viii

List of Tables

6.1 A table showing the EMD step sizes we found for each example, both for the
FEM and the DEM. Step sizes were found by trying values until the iteration
converged. 51

6.2 Table of the hyperparameters used with the DEM for both linear elasticity and
Stokes flow. NL is the number of layers, NN is the number of neurons in each
layer, σ is the activation function, η is the learning rate, σW is the standard
deviation of the random initialized weights, and σF is the standard deviation for
the random Fourier features. 52

6.3 A table showing minimum objective value, iteration where the minimum was
reached, total iterations, time taken, and if the iteration converged or not. These
values are shown for the three linear elasticity examples solved using the FEM.
For each example, the results for four discretization parameters are shown;
N = 40, N = 80, N = 160 and N = 320. 52

6.4 A table showing minimum objective value, iteration where the minimum was
reached, total iterations, time taken, and if the iteration converged or not. These
values are shown for the three Stokes flow examples solved using the FEM.
For each example, the results for four discretization parameters are shown;
N = 40, N = 80, N = 160 and N = 320. 58

6.5 A table showing minimum objective value, iteration where the minimum was
reached, total iterations, time taken, and if the iteration converged or not. These
values are shown for the three linear elasticity examples solved using the DEM.
For each example, the results for four discretization parameters are shown;
N = 40, N = 80, N = 160 and N = 320. 61

6.6 A table showing minimum objective value, iteration where the minimum was
reached, total iterations, time taken, and if the iteration converged or not. These
values are shown for the three Stokes flow examples solved using the DEM.
For each example, the results for four discretization parameters are shown;
N = 40, N = 80, N = 160 and N = 320. 64

6.7 A table showing the best objective reached by the FEM for every example,
labeled "Computed ϕ", and the objective calculated by interpolating the design
and recalculating the objective using the FEM with N = 320, labeled
"Interpolated ϕ". 67

6.8 A table showing the best objective reached by the DEM for every example,
labeled "Computed ϕ", and the objective calculated by interpolating the design
and recalculating the objective using the FEM with N = 320, labeled
"Interpolated ϕ". 68

ix

List of Tables

6.9 A table showing objective values from reference solutions for various examples.
The objective for the diffuser and pipe bend come from table I and II in [8]
respectively. Three separate objectives for the twin pipe example is shown. The
first comes from table IV in [8], while the other two comes from the description
of figure 6 in [32]. "Combined" means the pipes join in the center, which is the
global minimum, and "separate" means that the pipes do not join, which is a
local minimum. 69

x

Chapter 1

Introduction

The goal of topology optimization is figuring out how to place material within a domain
in order to optimize some aspect of the resulting design. This can for instance be how to
design a pipe that minimizes dissipated power, or how to design a truss that is as stiff as
possible without wasting any material. These kinds of questions have great importance
for the field of engineering, particularly in situations where weight plays a large role, such
as in aircraft and aerospace design [47]. The shapes you get from topology optimization
might be hard to manufacture with traditional means, but work well combined with
additive manufacturing [30].

Topology optimization is an improvement over shape optimization, which optimized
shapes without the ability to add or remove holes, and therefore without the ability
to change the initial topology. The field of topology optimization has a long history,
dating back to the seminal paper on numerical topology optimization Generating optimal
topologies in structural design using a homogenization method by Bendsøe and Kikuchi
in 1988 [5]. Later on, many approaches developed including density [4], level set [2],
topological derivatives [41] and phase field [9]. Traditionally, topology optimization is
done using an iterative minimization algorithm, and each iteration requires solving a
system of partial differential equations (PDEs), typically with the finite element method
(FEM). This becomes computationally expensive for large-scale topology optimization.
For this reason, with the rise of the field of artificial intelligence, attempts have been
made to use machine learning based methods instead. The idea is to use a neural network
to approximate the PDEs, making each iteration less computationally expensive, or
even developing a network that can solve topology optimization problems in one step,
removing the need for an iterative approach. Such iteration-free approaches have had
limited success [45], but approaches that replace the classic PDE solver with a neural
network have shown promise. One such approach is using a physics informed neural
network (PINN) [34], which uses the strong form of the governing PDE as the cost
function directly by evaluating the PDE at discrete points. This approach has been
successfully applied to linear elasticity [46] and fluid mechanics [11]. In the case where
the governing PDE arises from an energy minimization problem, an alternative approach
that avoids calculating the higher order gradients present in the strong form by using
the energy functional, called the deep energy method (DEM) [36], can be used.

In this thesis we will compare the performance of FEM based topology optimization
with the DEM based approach described in the paper Deep energy method in topology
optimization applications by He et al. [24]. We will compare performance in two
applications; finding optimal structures based on the equations of linear elasticity,
and finding optimal fluid pathways based on the Stokes equations. For both of these

1

Chapter 1. Introduction

applications we will use three examples to test the performance of the methods. To the
best of our knowledge, this thesis includes three novel contributions. We are going to
use a newly developed topology optimization algorithm described in the paper Proximal
Galerkin: A structure-preserving finite element method for pointwise bound constraints
by Keith et al. [25], and apply it to fluid optimization for the first time and combine it
with the DEM for the first time. We will also apply the approach by He et al. to fluid
optimization for the first time.

This thesis is structured as follows; chapter 2 contains some mathematical foundation
and describes some notation, chapter 3 first formulates topology optimization abstractly,
and then goes into detail on the two applications we are using. We also give some physical
background for the PDEs we are working with. In chapter 4 we describe the methods
we will use, namely the iterative solver, the FEM, and the DEM. Chapter 5 shows
some important code snippets from the program we have developed, together with short
explanations of what the code does. We also show some of the tests we developed to
ensure that the program works as intended. In chapter 6 we present our results and use
them to compare the two methods, and chapter 7 contains our conclusion. Appendix
A contains a link to the GitHub repository where the code developed for this thesis is
available.

2

Chapter 2

Preliminary Results

In this chapter we will cover some of the mathematical foundation that is necessary to
understand topology optimization, namely the weak form and the energy functional.

2.1 Notation

To write down the strong form of PDEs, we will use the nabla differential operator
∇ = x̂1

∂
∂x1

+ · · · + x̂d
∂

∂xd
, where x̂i is the i-th basis vector, and d is the number of

dimensions. We write the gradient and divergence as grad(ϕ) = ∇ϕ and div(u) = ∇ ·u,
where ϕ is a scalar field and u is a vector field. We also use ∇·∇ = ∇2 as the Laplacian
operator. Further, we apply ∇ row-wise when acting on higher order tensors. For
instance, the gradient of a 2D vector field u = (u1, u2) is

∇
[
u1
u2

]
=
[
(∇u1)T

(∇u2)T

]
=
[

∂u1
∂x

∂u1
∂y

∂u2
∂x

∂u2
∂y

]
,

and the divergence of a 2D matrix field M =
[
m11 m12
m21 m22

]
is

∇ ·
[
m11 m12
m21 m22

]
=

∇ ·
[
m11 m12

]T
∇ ·

[
m21 m22

]T
 =

[
∂m11

∂x + ∂m12
∂y

∂m21
∂x + ∂m22

∂y

]
.

Note that ∇u is the Jacobian matrix of u.

2.2 The Weak Form

The weak form of a PDE is useful as it lets us decrease the order of the equation by
using partial integration. Let u solve the PDE Du = f on some domain Ω, where D is
a differential operator and f is a function. Provided Du is regular enough, u also solves
the modified equation ∫

Ω
(Du) · v dx =

∫
Ω
f · v dx

for some sufficiently regular function v, as both multiplication and integration preserves
the equality. With the equation in this form, we can use partial integration to reduce
the order of the differential operator. For instance, given Poisson’s equation ∇2u+f = 0
on Ω, we get ∫

Ω
∇2u · v dx +

∫
Ω
f · v dx = 0.

3

Chapter 2. Preliminary Results

We can then formally use partial integration on
∫

Ω∇2u · v dx:∫
Ω
∇2u · v dx =

∫
δΩ

(∇u · n)v ds−
∫

Ω
∇u · ∇v dx ,

where δΩ is the boundary of Ω, and ds is the surface measure. To ensure a solution
exists, we must define some boundary conditions. We define the Dirichlet boundary
condition u = gD on ΓD ⊂ δΩ and the Neumann boundary condition ∇u · n = gN on
ΓN = δΩ \ ΓD. We must also add a requirement on v, namely that v = 0 where there
are Dirichlet boundary conditions. With this, we get∫

δΩ
(∇u · n)v ds =

∫
ΓN

gN · v ds .

It is common to use the notation

(u, v) =
∫

Ω
u · v dx , (u, v)Γ =

∫
Γ
u · v ds ,

which lets us write the weak form of Poisson’s equation as

(∇u,∇v) = (f, v) + (gN , v)ΓN
.

With the PDE in its weak form, the solution u can be defined as the function for
which the weak form holds for all v. To make this well-defined, v must be an element
of some function space V , in which case "all v" means ∀v ∈ V . There are some obvious
requirements on V , namely that all functions in V are integrable over Ω. It might seem
like another requirement should be that the functions are differentiable, but such a strict
requirement is often not suitable in practice [17]. To construct the weak form, we only
need partial integration to hold. This leads to the use of the so-called weak derivative,
and is the motivation for the construction of the Sobolev space W 1,p(Ω), which consists
of all locally summable functions v : Ω → R such that every partial derivative of v
exists in a weak sense and belongs to Lp(Ω) [17]. The function v being locally summable
means that

∫
K |v|dx < ∞ for all compact subsets K of Ω. The function space Lp(Ω)

is called the Lebesgue space, and it is defined as the set of all functions v such that
(
∫

Ω |v|p dx)1/p < ∞. In the special case p = 2, the notation W 1,2(Ω) = H1(Ω) is used.
We can now define some useful function spaces:

H1
0 (Ω,Γ) =

{
v ∈ H1(Ω) | v = 0 on Γ

}
,

Ug(Ω,Γ) =
{
u ∈ H1(Ω) | u = g on Γ

}
,

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω
q dx = 0

}
.

Note that Ug(Ω,Γ) is not actually a vector space; it does not contain 0 when g ̸= 0, and
is therefore an affine space. This distinction does however not matter in this context.
Typically, the function v is called a test function, and u is called a trial function. For
Poisson’s equation, the set of test functions V is then H1

0 (Ω,ΓD), and the set of trial
functions U is UgD (Ω,ΓD). The weak form of Poisson’s equation can then be formulated
as follows: Given f ∈ L2(Ω), find u ∈ UgD (Ω,ΓD) such that

(∇u,∇v) = (f, v) + (gN , v)ΓN
∀v ∈ H1

0 (Ω,ΓD).

4

2.3. The Energy Functional

2.3 The Energy Functional

In many instances, PDEs arise from energy minimization problems, which are studied in
the calculus of variations. These kinds of PDEs are called variational problems, and are
defined by the following property: the PDE is equal to the derivative of some functional,
called the energy functional. From calculus, we remember Fermat’s theorem, which
states that the value x that minimizes some function f(x) is a solution to f ′(x) = 0.
This also applies to functionals, so the function that minimizes the energy functional is
a solution to the original PDE [18].

For a more robust definition of a variational problem, we first define the Lagrangian
L(x, u(x),∇u(x)) for some differentiable function u : Ω ⊂ Rn → R. Finding the
minimum of the energy functional

ψ(u) =
∫

Ω
L(x, u(x),∇u(x)) dx

is then the same as finding the solution to the Euler-Lagrange equation

∂L
∂u
−

n∑
i=1

∂

∂xi

∂L
∂u′

i

= 0,

where x = (x1, . . . , xn) and ∇u = (u′
1, . . . , u

′
n) [18]. We see that if L = 1

2 ||∇u||
2 − f · u,

then
∂L
∂u

= −f,

∂

∂xi

∂L
∂u′

i

= ∂

∂xi

∂

∂u′
i

(
1
2

n∑
i=1

(u′
i)2
)

= ∂2u

∂x2
i

,

thus the Euler-Lagrange equation is equal to Poisson’s equation. This means the energy
functional for the Poisson’s equation is equal to

ψ(u) = 1
2

∫
Ω
||∇u||2 dx−

∫
Ω
f · u dx .

Finding the energy functional this way can be difficult for more complicated PDEs,
especially when boundary conditions are involved. Luckily, for linear elliptic second-
order PDEs, there is a simpler approach where you start with the weak form of the PDE
and set v = u. This is not actually allowed when the Dirichlet boundary function g ̸= 0,
but it will typically give you an expression close to the true energy functional. With
Poisson’s equation, this gives∫

Ω
||∇u||2 dx−

∫
Ω
f · udx−

∫
ΓN

gN · uds = 0

This is close to ψ(u) = 0, but the factor in front of ||∇u||2 is missing. To get the true
functional, you must correct factors to ensure that the derivative of the functional is
equal to the original PDE. This gives the true functional

ψ(u) = 1
2

∫
Ω
||∇u||2 dx−

∫
Ω
f · udx−

∫
ΓN

gN · u ds .

A solution to Poisson’s equation is then found by finding

u = argmin
v∈UgD

(Ω,ΓD)
ψ(v).

5

Chapter 2. Preliminary Results

Note that not all energy functionals have a minimum, so there are conditions the
Lagrangian must fulfill for it to be useful. Going into detail about those conditions is
outside the scope of this thesis, see [18] for more details. Luckily, all the PDEs we are
going to work with in this thesis do fulfill the conditions.

6

Chapter 3

Introduction to Topology Optimiza-
tion

The goal of topology optimization is to find the material distribution ρ in a design
domain Ω that minimizes an objective function ϕ(uρ, ρ), where uρ is a state function
that satisfies a state equation Dρu = f , for some differential operator Dρ that depends
on ρ and some function f . The material distribution can take two values; 0 representing
absence of material, and 1 representing presence of material. While solving the problem
with a discrete material distribution is possible, there are many solvers for discrete
problems, none of them are suited for the large scale problems encountered in topology
optimization. Instead, it is common to let ρ be continuous, and then penalize values
that are not 0 or 1 using a function r(ρ). What this function is depends on the type of
topology optimization you are doing, so we will go into further detail in section 3.1 and
3.2. This way of defining topology optimization is called the density approach. Some
other approaches are the level set approach, where ρ is defined with respect to a so-called
level set function χ by ρ = (1 + sign(χ))/2, the topological derivatives approach, which
is too complicated for us to summarize here, and the phase field approach, which is
similar to the density approach except it penalizes intermediate values by adding a term
to the objective function [37]. All of these approaches are similar to each other [37], so
we will use the density approach as it is one of the most popular approaches.

The optimal topology often includes many small elements, like very thin beams
or many small holes. This is a problem when solving the state equation numerically,
as numerical solvers need to discretize the equation, making the small elements
unrepresentable. This typically results in checkerboard patterns that are nonphysical
[28]. Small elements can also cause the simplifying assumptions made for a problem to
no longer be valid, making the optimized topology perform poorly in practice. To avoid
these problems, it is common to filter ρ to enforce a minimum length scale. A common
filter is called the Helmholtz filter [28], also called the screened Poisson equation, which
is defined as

−ϵ2∇2ρ̃+ ρ̃ = ρ,

where ϵ is the minimum length scale and ρ̃ is the filtered ρ. The filter equation is
subject to the Neumann boundary conditions ∇ρ̃ ·n = 0 on δΩ. The maximum principle
guarantees that 0 < ρ̃ < 1, so filtering ρ preserves its bounds. The weak form of this
equation reads: Given ϵ ∈ R≥0 and ρ ∈ L2(Ω), find ρ̃ ∈ H1(Ω) such that

(ϵ2∇ρ̃,∇v) + (ρ̃, v) = (ρ, v) ∀v ∈ H1(Ω).

7

Chapter 3. Introduction to Topology Optimization

The minimization problem is commonly subject to a volume constraint limiting the
amount of material present, so we require∫

Ω
ρ(x) dx ≤ γ|Ω|, (3.1)

where |Ω| =
∫

Ω dx, and 0 < γ < 1 is the largest fraction of the volume the material is
allowed to fill. γ cannot be 0 or 1, as that would necessitate ρ = 0 and ρ = 1 respectively.

We define S(ρ) to be a function that returns the solution to the state equation, and
F (ρ) to be a function that returns the solution to the filter equation. The topology
optimization problem can then formally be written as

min
ρ

ϕ(S(F (ρ)), F (ρ))

s.t
∫

Ω
ρdx ≤ γ|Ω|

0 ≤ ρ ≤ 1

3.1 Topology Optimization of Elastic Materials

3.1.1 Linear Elasticity

In topology optimization of elastic materials, we typically want to find the shape of a
body, conforming to a volume constraint, that deforms as little as possible under an
applied load. The applied load, called a body force f , is a vector field that describes
the forces that act on the body at every point. While this does include gravity from the
body’s own weight, we are often interested in large external forces acting on small areas
of the body, so we can ignore the gravitational component.

To describe how a body deforms, we must apply the principles of continuum
mechanics. When applying a load to a body, it experiences both stress and strain. Stress
describes the internal forces that counteract the applied load, the average restorative
internal force per area, while strain describes the relative deformation that is caused by
the load. The relationship between stress and strain, called the stress-strain curve, is
important to understand how a material acts when a load is applied. See figure 3.1 for
en example of a stress-strain curve. For most ductile materials, the stress-strain curve
has three parts. For small applied loads, the stress and strain are proportional to each
other. This is called elastic deformation, meaning that all deformation is reversed when
the load is removed. If the load is large enough, the strain starts to increase faster
than the stress. This is called plastic deformation, meaning that some deformation is
permanent. If the load is even larger, the material will break. We do not want our
material to be permanently deformed, so we assume that it only experiences elastic
deformation. This is a reasonable assumption as most materials we use to carry loads,
such as steel, have a high yield strength, that is, they can carry a large load without
experiencing plastic deformation.

The mathematical model of how solid objects deform from infinitesimal elastic
deformations is called linear elasticity. There are three important equations in linear
elasticity. The first one governs how the displacements u resulting from f change over
time:

∇ · σ + f = ρ̄ü,

where σ is the Cauchy stress tensor and ρ̄ is the density of the material, not to be
confused with the material distribution we are optimizing [39]. This equation is an

8

3.1. Topology Optimization of Elastic Materials

Figure 3.1: Typical stress vs. strain diagram for a ductile material (e.g. steel). Image is
downloaded from commons.wikimedia.org/wiki/File: Stress_strain_ductile.svg.

expression of Newton’s second law, where the internal forces are trying to counteract
the external force. We are interested in the steady state equation where the material
has displaced enough to fully counteract f . In that case, ü = 0, so our state equation is

−∇ · σ = f . (3.2)

The second governing equation relates the displacements and the strain:

ε = 1
2
(
∇u + (∇u)T

)
, (3.3)

where ε is the infinitesimal strain tensor [40]. The third equation relates the stress and
the strain:

σ = C : ε,

where C is the fourth-order stiffness tensor and : represents the inner product between
tensors [38]. This is the general equation for Hooke’s law, and it comes from the linear
relationship between stress and strain. We assume that our material is homogeneous
and isotropic, meaning that its physical properties are the same throughout the entire
material. In that case, we get:

σ = λ∇ · uI + 2µε, (3.4)

where λ, µ > 0 are called Lamé parameters and I is the identity matrix [40]. The Lamé
parameters relate to the material properties Young’s modulus E and Poisson ratio ν as
follows:

λ = Eν

(1 + ν)(1− 2ν) ,

µ = E

2(1 + ν) .

Equation (3.2) is typically subject to the Dirichlet boundary condition u = 0 on
Γ0 ⊂ δΩ, representing a region on the boundary where the material is fixed, and the
Neumann boundary condition σn = t on Γt ⊂ δΩ,Γ0 ∩ Γt = ∅, representing a region
with an applied traction force. For the rest of the boundary, δΩ \ (Γ0 ∪ Γt), σn = 0 is
used.

9

https://commons.wikimedia.org/wiki/File:Stress_strain_ductile.svg

Chapter 3. Introduction to Topology Optimization

3.1.2 Linear Elasticity with Varying Density

σ is proportional to the Young’s modulus of the material, a material property that tells
us how easy the material is to deform. The Young’s modulus is not defined for the
empty regions, as it is only a property of solid materials, but we could claim that it is
zero as deforming an empty region does not require any energy. This leads to the naive
approach for introducing the material distribution ρ into the elastic compliance problem,
which is to simply multiply σ with ρ̃. This has two problems; it does not penalize values
of ρ̃ between 0 and 1, and it causes the PDE to be singular if ρ̃ = 0. To solve these
problems, the modified solid isotropic material penalization (SIMP) model is often used:

r(ρ̃) = rmin + ρ̃p(1− rmin),

where 0 < rmin ≪ 1 is a small value that helps to avoid singularities, which can be
interpreted as the fraction E0/E, where E0 is the Young’s modulus of the empty regions.
p > 1 is a penalization parameter that penalizes intermediate values, and it has been
found that optimal value for p is 3 [37]. A potential reason for why this is the optimal
number is that it is the lowest p where intermediate densities are physically realizable
[6]. By physically realizable we mean that the intermediate densities act as a composite
material made from void and the material we get when ρ = 1. The reason the SIMP
model works is that it causes the stiffness of the material to be sublinearly proportional
to the density ρ. The volume is linearly proportional to ρ, so intermediate densities
are in a sense an inefficient use of volume. Combined with a volume constraint, this
penalizes intermediate values. For the value rmin, we used 10−6.

We want to maximize the stiffness of the material, which is the same as minimizing
its compliance. This gives us the objective function

ϕ(ρ) =
∫

Ω
f · uρ dx +

∫
Γt

t · uρ ds ,

where uρ = S(F (ρ)) is the solution to the elasticity equations.
To derive the weak form of the elasticity equations, we first combine (3.2), (3.4), and

the modified Young’s modulus to get the state equation

−∇ · (r(ρ̃)(λ(∇ · uI) + 2µε)) = f .

Using Korn’s inequality, we can find the weak form of this equation [13]: Given
λ, µ ∈ R≥0, ρ̃ ∈ H1(Ω) and f ∈ L2(Ω), find u ∈ H1

0 (Ω,Γ0) such that

λ(r(ρ̃)∇ · u,∇ · v) + 2µ(r(ρ̃)ε(u), ε(v))
= (f ,v) + (t,v)Γt ∀v ∈ H1

0 (Ω,Γ0).
(3.5)

From this equation, a straight forward calculation gives the energy functional

ψ(u; ρ) = 1
2

∫
Ω
r(ρ̃)

(
λ||∇ · u||2 + 2µ||ε||2

)
dx

−
∫

Ω
f · u dx−

∫
Γt

t · u ds .
(3.6)

3.1.3 Elasticity Optimization Examples

For the three linear elasticity examples we are going to use, one is from Proximal
Galerkin: A structure-preserving finite element method for pointwise bound constraints

10

3.1. Topology Optimization of Elastic Materials

[25] and two are from Deep energy method in topology optimization applications [24]. All
of them use the domain Ω = [0, w]× [0, h], for some width w and height h. The first one
is a cantilever beam that is one unit tall and three units wide. We are going to use

ϵ = 0.02,
γ = 0.5,

Γ0 = {(x, y) ∈ Ω | x = 0}, Γt = ∅,

f =
{

(0,−1) | (x− 2.9)2 + (y − 0.5)2 ≤ 0.052

0 | Otherwise ,

E = 5
2 , ν = 1

4 ,

which means that the cantilever can fill half of the domain, is fixed on its left side, and a
force equal to (0,−1) is applied in a circular area with center (2.9, 0.5) and radius 0.05.
E and ν is chosen such that λ = µ = 1. A sketch of the cantilever is shown in figure 3.2.

Figure 3.2: Figure of the cantilever beam we are going to optimize. Based on figure 6.2 from [25].

The second example is a short cantilever beam that is five units tall and 10 units
wide. We are going to use

ϵ = 0.25
2
√

3
,

γ = 0.4,
Γ0 = {(x, y) ∈ Ω | x = 0},

Γt =
{

(x, y) ∈ Ω | x = 10 ∧ y ∈
[5

2 −
1
18 ,

5
2 + 1

18

]}
,

t = (0,−2000), f = 0,
E = 2 · 105, ν = 0.3,

which means that the cantilever can fill 40% of the domain, is fixed on its left side, and
a force equal to (0,−2000) is applied in a small line with center 5

2 and length 1
9 on its

right edge. A sketch of the short cantilever is shown in figure 3.3.

The third example is a bridge that is two units tall and 12 units wide. We are going

11

Chapter 3. Introduction to Topology Optimization

Figure 3.3: Figure of the short cantilever beam we are going to optimize. Based on an example
from [24].

to use

ϵ = 0.25
2
√

3
,

γ = 0.4,
Γ0 = {(x, y) ∈ Ω | x = 0 ∨ x = 12},

Γt =
{

(x, y) ∈ Ω | y = 2 ∧ x ∈
[
6− 1

4 , 6 + 1
4

]}
,

t = (0,−2000), f = 0,
E = 2 · 105, ν = 0.3,

which means that the bridge can fill 40% of the domain, is fixed on both its left and
right edge, and a force equal to (0,−2000) is applied in a small line with center 6 and
length 1

2 on its top edge. A sketch of the bridge is shown in figure 3.4.

Figure 3.4: Figure of the bridge we are going to optimize. Based on an example from [24].

3.2 Topology Optimization of Fluids

3.2.1 Stokes Flow

In topology optimization of fluids, we typically want to find the shape of some kind of
pipe, conforming to a volume constraint, in which a fluid dissipates the least amount of
energy while traveling through it. We are going to assume that our fluid is Newtonian
and incompressible. A fluid being incompressible means that its density does not change
with pressure, which is typically approximately true for liquids and not true for gasses.
A fluid being Newtonian means that the viscous stress from its flow is proportional to

12

3.2. Topology Optimization of Fluids

the local strain rate. The definition of a Newtonian fluid is similar to the definition of an
elastic deformation, and indeed, incompressible Newtonian fluids are subject to similar
equations as those from linear elasticity. The only change is the equation of motion,
which now describes how the fluid velocity u changes over time:

∇ · σ + f = ρ̄

(
∂u

∂t
+ (u · ∇)u

)
, (3.7)

where the body force f can be interpreted as a forcing term that pushes the fluid in a
certain direction [1]. The density ρ̄ is the density of the fluid, and it is not related to
the material distribution ρ.

The Cauchy stress tensor for an incompressible Newtonian fluid is

σ = 2µε− pI, (3.8)

where µ is the viscosity of the fluid and p is the fluid pressure [1]. The incompressibility
condition can be written in terms of u as ∇·u = 0. Typically, equation (3.8) is combined
with (3.3) and (3.7), which results in the Navier-Stokes equations

ρ̄

(
∂u

∂t
+ (u · ∇)u

)
= µ∇2u−∇p+ f ,

∇ · u = 0.

We want to make two further simplifications. We assume that the fluid flow has
reached a steady state, so the time derivative is zero. Further, we assume that the
Reynolds number of the flow is small, so ρ̄(u ·∇)u = 0. The flow having a low Reynolds
number means that the fluid velocities are small, the viscosity is large, or the length-scale
of the flow is small. With these simplifications, we get the Stokes equations

µ∇2u−∇p+ f = 0,
∇ · u = 0.

We are not going to use a forcing term, so f = 0. For the boundary conditions,
we are going to use the Dirichlet boundary condition u = g on δΩ, where g describes
boundary flows. We are going to be using parabolic boundary flows, which means they
can be parameterized by

v(t; c, l, v̂) = v̂max
{(

1− 2(t− c)
l

)2
, 0
}
,

where c is the center of the flow region, l is the length of the flow region, and v̂ is the
flow rate at c. We can then write g as

g(x, y) =
∑

i

vsidei(x, y; ci, li, v̂i),

where vside : δΩ→ R2 is defined as,

vside(x, y) =



v(y)x̂ | side = left ∧ x = 0
−v(y)x̂ | side = right ∧ x = w
−v(x)ŷ | side = top ∧ y = h
v(x)ŷ | side = bottom ∧ y = 0

0 | otherwise

,

13

Chapter 3. Introduction to Topology Optimization

where x̂ and ŷ are the unit vectors in the x- and y-directions respectively. The minus
signs in the right and top part of the definition are necessary so a positive vmax always
represents an inflow, and a negative vmax always represents an outflow. It is important
that the amount of fluid flowing into the domain is the same as the amount flowing out,
which means that ∫

δΩ
g · n ds = 0,

which can be simplified to ∑
i

liv̂i = 0,

as long as the flow regions never extend past the domain.

3.2.2 Stokes Flow with Varying Permeability

Unlike elastic compliance, introducing our material distribution to Stokes flow is not
trivial. As we are using a two-dimensional domain, we can use lubrication theory, a
theory that describes how fluid flows in a domain in which one dimension is significantly
smaller than the others. We can use this by assuming that our fluid flows in a domain
Ω×

[
−h

2 ,
h
2

]
, where h is a small value representing the height of the domain. From this,

you get the modified state equations

µ∇2u−∇p− κu = 0, (3.9)
∇ · u = 0, (3.10)

where κ ∝ 1
h2 [22]. Fluid can easily flow in areas with a large h, and fluid cannot easily

flow in areas with a small h, so if we assume that h = h(x, y), we get an equation where
κ≪ 1 represents presence of fluid, and κ≫ 1 represents absence of fluid. We therefore
want κ = r(ρ), 0 < r(1) = rmin ≪ 1, r(0) = rmax ≫ 1. If r is a linear function, the
optimal topology includes only discrete values of ρ [8], but in practice this makes it
difficult for a solver to converge to the correct solution. It is therefore common to add
a penalization parameter q > 0, giving us

r(ρ) = rmax + (rmin − rmax)ρ1 + q

ρ+ q
.

As q → ∞, this function approaches a linear function, so a higher q-value gives a more
discrete solution. In practice, a value of 0.1 is often enough to get sharp boundaries
between regions with and without fluid [8]. For the limits of r, we used the values
rmin = 2.5/1002 and rmax = 2.5/0.012. While the approach of using lubrication theory
only makes physical sense with a 2D domain, equation (3.9) also works in 3D [22]. In
that case, r(ρ) describes the inverse permeability of some porous material the fluid flows
through.

Unlike the case with elastic compliance, adding many small holes typically produces
a worse result with fluids [8]. This means that we do not need to filter ρ. For our
objective, we want to minimize the total potential power of a fluid, given by

ϕ(ρ) = 1
2

∫
Ω
r(ρ)||uρ||2 + µ||∇uρ||2 dx ,

where uρ = S(ρ) is the solution to the modified state equations.

14

3.2. Topology Optimization of Fluids

To get the weak form of the state equations for Stokes flow, we multiply (3.9) with
a test velocity field v and (3.10) with a test pressure field q, and then apply partial
integration. This gives

(r(ρ)u,v) + µ(∇u,∇v) + (∇p,v) = 0 ∀v ∈ H1
0 (Ω, δΩ),

(∇ · u, q) = 0 ∀q ∈ L2
0(Ω).

We need both of these equations to hold, so if we add them together, we get the weak form
of the Stokes equations: Given µ ∈ R≥0 and ρ ∈ L2(Ω), find (u, p) ∈ Ug(Ω, δΩ)×L2

0(Ω)
such that

(r(ρ)u,v) + µ(∇u,∇v) + (∇p,v) + (∇ · u, q) = 0
∀(v, q) ∈ H1

0 (Ω, δΩ)× L2
0(Ω).

(3.11)

The energy functional is given by

ψ(u, p; ρ) = 1
2

∫
Ω
r(ρ)||u||2 + µ||∇u||2 dx

+
∫

Ω
∇p · u + (∇ · u)p dx .

(3.12)

The fact that (∇·u, q) becomes (∇·u, p) instead of (∇·u,∇·u) might seem a bit weird,
but is necessary, as we now get

∂ψ

∂u
= µ∇2u−∇p− r(ρ)u,

∂ψ

∂p
= ∇ · u,

so finding ∇ψ = 0 is equivalent to finding the solution to the Stokes equations.
There is a simpler way of defining the energy functional that does not include the

pressure. If u is divergence free, we can write [8]

ψ(u; ρ) = 1
2

∫
Ω
r(ρ)||u||2 + µ||∇u||2 dx . (3.13)

Clearly, this is similar to the objective value. In fact, the objective can be defined with
respect to the functional as

ϕ(ρ) = min
u∈Udiv

ψ(u; ρ),

where Udiv = {u ∈ Ug(Ω, δΩ) | ∇ · u = 0}.

3.2.3 Fluid Optimization Examples

We are going to use three of the examples from Topology optimization of fluids in Stokes
flow [8]. The first one is a diffuser that is one unit wide and one unit tall. We are going
to use

γ = 0.5,

g(x, y) = vleft

(
x, y; 1

2 , 1, 1
)

+ vright

(
x, y; 1

2 ,
1
3 ,−3

)
,

that is, the diffuser can fill half of the domain and has two flows; one on the left and one
on the right. The flow on the right is one third the length, and has three times the flow
rate as the one on the right. A sketch of the diffuser is shown in figure 3.5.

15

Chapter 3. Introduction to Topology Optimization

Figure 3.5: Figure of the diffuser we are going to optimize. From figure 4 in [8].

The second example is a pipe bend that is one unit wide and one unit tall. We are
going to use

γ = 2π
25 ,

g(x, y) = vleft

(
x, y; 4

5 ,
1
5 , 1

)
+ vright

(
x, y; 4

5 ,
1
5 ,−1

)
,

that is, the bend can fill about 25% of the domain and has two flows; one on the top of
the left side and one on the right of the bottom side. A sketch of the pipe bend is shown
in figure 3.6.

The third example is a twin pipe that is 1.5 units wide and one unit tall. We are
going to use

γ = 1
3 ,

g(x, y) = vleft

(
x, y; 1

4 ,
1
6 , 1

)
+ vleft

(
x, y; 3

4 ,
1
6 , 1

)
+ vright

(
x, y; 1

4 ,
1
6 ,−1

)
+ vright

(
x, y; 3

4 ,
1
6 ,−1

)
,

that is, the twin pipe can fill about 33% of the domain and has four flows; two on the
left and two on the right. For this example, a penalization of q = 0.1 will not give the
optimal solution, so we will use the approach described in [8], where we first solve the
optimization problem for q = 0.01, giving a solution that is diffuse but has the correct
shape, and then use that result as the initial value for a new run with q = 0.1. A sketch
of the twin pipe is shown in figure 3.7.

16

3.2. Topology Optimization of Fluids

Figure 3.6: Figure of the pipe bend we are going to optimize. From figure 6 in [8].

Figure 3.7: Figure of the twin pipe we are going to optimize. From figure 10 in [8].

17

Chapter 3. Introduction to Topology Optimization

18

Chapter 4

Methods

Topology optimization can broadly be divided into two parts; the first part solves the
various PDEs required to calculate the objective function, and the second part iteratively
optimizes the objective function. We want to compare two approaches for solving PDEs,
so it is important that the optimization is performed using the same algorithm for both
methods. This chapter will first explain the objective optimizer we are using, and then
explain the two PDE solvers we are going to compare.

4.1 Entropic Mirror Descent

There exists many methods that can solve the type of constrained optimization problem
we get with topology optimization. As the exact method is not the focus of this thesis,
we are going to use a newly developed method called entropic mirror descent (EMD),
which is an application of the proximal Galerkin method [25], described in algorithm
1. We chose this method as it is very simple to implement numerically. It is a latent
space gradient descent algorithm, so instead of performing the descent on the density ρ
directly, it instead operates on the transformed function ϑ using ρ = σ(ϑ), ϑ = σ−1(ρ),
where

σ(x) = 1
1 + e−x

,

σ−1(x) = − log
(1
x
− 1

)
.

The function σ is called the sigmoid function, and it is an increasing function with the
domain R and the image (0, 1). This means that the transformation ρ = σ(ϑ) ensures
that 0 ≤ ρ ≤ 1. To obey the volume constraint, EMD corrects the gradient descent step

ϑk+1/2 = ϑk − αk∇ϕ
(
σ
(
ϑk
))
,

where αk is some step size, by adding a value c ∈ R that satisfies the equation∫
Ω
σ
(
ϑk+1/2 + c

)
dx = γ|Ω|.

This ensures that ρk+1 = σ
(
ϑk+1/2 + c

)
satisfies the volume constraint. Note that this

volume correction ensures that
∫

Ω ρ dx = γ|Ω|, not just
∫

Ω ρdx ≤ γ|Ω| which is how the
constraint is typically formulated.

19

Chapter 4. Methods

Algorithm 1 Entropic mirror descent
Input : Initial density distribution ρ0 ∈ L2(Ω), sequence of step sizes αk > 0,
increment tolerance itol > 0, and normalized tolerance ntol > 0.
Output: Optimized material density ρ = σ

(
ϑk
)
.

Initialize k = 0, ϑ0 = σ−1(ρ0).
while

∣∣∣∣∣∣σ(ϑk
)
− σ

(
ϑk−1

)∣∣∣∣∣∣
L2(Ω)

> min{αkntol, itol} do
// Latent space gradient descent
Assign ϑk+1/2 ← ϑk − αk∇ϕ

(
σ
(
ϑk
))

// Compute Lagrange multiplier
Solve for c ∈ R such that

∫
Ω σ
(
ϑk+1/2 + c

)
dx = γ|Ω|.

// Latent space feasibility correction
Assign ϑk+1 ← ϑk+1/2 + c.
Assign k ← k + 1.

end while

The equation defining c is a simple one dimensional root finding problem, which can
easily be solved using Newton’s method. This is done by iteratively calculating

cm+1 = cm −
∫

Ω σ
(
ϑk+1/2 + cm

)
dx− γ|Ω|∫

Ω σ
′(ϑk+1/2 + cm

)
dx

until |cm+1 − cm| < ϵ, for some initial value c0 and small value ϵ. Because σ′(x) =
σ(x)(1 − σ(x)) > 0 ∀x ∈ R, Newton’s method should never hit a singularity. However,
due to numerical inaccuracies, this is not true in practice, so a fallback algorithm is
necessary in case Newton’s method fails. For this, we used Brent’s method, which
is a combination of many methods, making it very reliable. Brent’s method is more
complicated than Newton’s method, so a thorough explanation is outside the scope of
this thesis; for more information see [10]. The important part is that Brent’s method
can find the root of a function f given two points a and b such that f(a) and f(b)
have opposite signs. We do not know two such points a priori, so we developed a simple
algorithm, shown in algorithm 2, that gives two values with opposite sign. The algorithm
is not guaranteed to work for any function f , but for the volume correction we know
that

lim
c→∞

σ
(
ϑk+1/2 + c

)
= 1 and lim

c→−∞
σ
(
ϑk+1/2 + c

)
= 0,

which means the algorithm is guaranteed succeed in our case.
For the various parameters, we used c0 = 0 and ϵ = 10−12 for Newton’s method and

r0 = 2 for Brent’s method.
The difficult part of EMD is calculating the gradient of our objective functions. From

[25] we get that the gradient for linear elasticity is defined by the PDE

−ϵ2∇2w̃ + w̃ = w on Ω, ∇w̃ · n = 0 on δΩ,

where
w = −r′(ρ̃)

(
λ||∇ · u||2 + 2µ||ε||2

)
and w̃ = ∇ϕ(ρ). Note that this equation is just the Helmholtz filter applied to w. The
gradient for Stokes flow is easier to calculate, as it does not require solving a PDE. It is

20

4.2. Finite Element Approach

Algorithm 2 Brent bound finder
Input : Some function f : R→ R and initial radius r0.
Output: Two points a and b such that a ≤ b and f(a)f(b) ≤ 0.

Initialize r = r0.
Initialize (a, b) = (−r, r)
while f(−r0)f(r0) > 0 do

Assign r ← 2r
Assign (a, b)← (−r, r)

end while

simply given by
∇ϕ(ρ) = 1

2r
′(ρ)||u||2.

A sketch of the calculation for this result can be found in appendix B.

4.2 Finite Element Approach

4.2.1 The Finite Element Method

The FEM is a commonly used numerical method for solving PDEs that converts the
original PDE into a system of algebraic equations. It approximates the true solution of
the PDE by finding a solution in a simple finite dimensional subspace Sh of the full space
of solutions H1(Ω), where h is a discretization parameter. The discretization parameter
is defined in such a way that the approximate solution converges to the true solution as
h→ 0. The FEM consists of two main parts; constructing a partition of the domain Ω,
called a mesh, and defining a basis {φ1, . . . , φk} for the subspace Sh of functions defined
on the mesh. Assuming that the approximation û of the true solution u is an element
of Sh, we can write

û =
k∑

i=1
uiφi,

where ui ∈ R are some unknown coefficients. The basis functions can be any set of
linearly independent functions, such as piecewise continuous polynomials. A property
we want the basis functions to have is that they have a small support, that is, they are 0
for most of Ω. This is useful as it means the value of v ∈ Sh at any point is determined
by just a few coefficients, which makes the resulting linear system sparse. It is however
important that the combined support of all the basis functions is the entire domain. If
this is not the case for some point x̄ ∈ Ω, then v(x̄) = 0 for all v ∈ Sh.

The FEM in 1D

To explain how the FEM works, we will start with the simplest case. One of the simplest
sets of basis functions are the piecewise linear polynomials defined on a one dimensional
domain. For the domain Ω = [a, b], the only possible mesh is {[xi, xi+1]}k−1

i=1 for some
points a = x1 < · · · < xk = b. We define hi = xi − xi−1 and h = max {hi}. The basis
functions are defined by the property φi(xj) = δij for i, j ∈ {1, . . . , k}. This means
that φi is zero in [a, xi−1], increases linearly to 1 in [xi−1, xi], decreases linearly to 0 in
[xi, xi+1], and is zero in [xi+1, b]. This gives a triangular shape that looks like a hat,

21

Chapter 4. Methods

so these functions are commonly referred to as hat functions. It is easy to see that φi

has the support [xi−1, xi+1]. The boundary functions φ1 and φk are a bit different as x0
and xk+1 are not defined, so they have a smaller support, being [x1, x2] and [xk−1, xk]
respectively.

To explain how the FEM is used to transform the PDE into a linear equation, we
will work through a simple example solving the boundary value problem

f ′′(x) = −8, f(0) = f(1) = 0,

which has the analytical solution f(x) = 4x(1 − x). Our domain is Ω = [0, 1], and we
use piecewise linear polynomials. We define f̂ to be the numerical approximation of the
solution f , so we can write f̂ = ∑k−1

i=2 f̂iφi for some unknown values f̂2, . . . , f̂k−1. Note
that f̂1 = f̂k = 0 due to the boundary conditions, so we can ignore them. We start by
calculating the weak form of the differential equation. As we have Dirichlet boundary
conditions, the test function v is zero at 0 and 1, giving us∫ 1

0
f ′v′ dx =

∫ 1

0
−8v dx .

We also assume that v ∈ Sh, meaning we can write v = ∑k−1
i=2 viφi for some coefficients

vi. With this, we can rewrite the weak form:

∫ 1

0

k−1∑
j=2

vjφj

′(
k−1∑
i=2

f̂iφi

)′

dx =
∫ 1

0
−8

k−1∑
j=2

vjφj

dx

=⇒
∫ 1

0

k−1∑
j=2

vjφ
′
j

k−1∑
i=2

f̂iφ
′
i dx =

∫ 1

0

k−1∑
j=2

vj(−8φj) dx

=⇒
k−1∑
j=2

vj

k−1∑
i=2

∫ 1

0
φ′

jφ
′
i dx f̂i =

k−1∑
j=2

vj

∫ 1

0
−8φj dx

If we define v = (v2, . . . , vk−1), f̂ = (f̂2, . . . , f̂k−1),

b = (b2, . . . , bk−1), bi =
∫ 1

0
−8φi dx ,

A = {aij}k−1
i,j=2, aij =

∫ 1

0
φ′

iφ
′
j dx ,

this is equivalent to

vTAf̂ = vT b.

All the values in v are arbitrary, so for the above equation to hold, Af̂ = b must hold.
Solving this equation gives us the f̂i values needed to compute f̂ . Figure 4.1 compares the
FEM approximation to the analytical solution for k = 5, and shows the basis functions.

In this case the integrals needed to compute aij and bi are solvable analytically, but
in general a numerical integration method must be used. We can now see why we want
the basis functions to have a small support; we only need to calculate aii, ai+1,i and
ai,i+1, as φi and φj lack a common support when |i − j| > 1. Calculating A therefore
only requires 3k − 8 integrals, instead of the full (k − 2)2. For large k, this results in a

22

4.2. Finite Element Approach

Figure 4.1: A figure comparing the analytical solution of the differential equation f ′′(x) =
−8, f(0) = f(1) = 0 with a numerical approximation using the finite element method. The solid
blue line is the analytical solution, and the striped orange line is the numerical approximation.
The light gray triangles show the nodal basis functions, with various line styles to differentiate
the different functions.

very sparse matrix, so both storing the matrix and solving the equation requires special
consideration. In the general case of solving some PDE Du = f , it is common to define
the functions a(u,v) and l(v) such that the weak form of the PDE is a(u,v) = l(v). We
still get the linear equation Aû = b, but now bi = l(φi), aij = a(φi, φj). If we had used
Neumann boundary conditions instead of Dirichlet ones, we would get an extra term in
the weak form, and we would have to include the edge values at index 1 and k, but the
computation would be otherwise unchanged.

The FEM in 2D

Unlike in one dimension, we have much more freedom in how we construct a 2D mesh.
We will only focus on one of the most common types of 2D mesh, called a triangulation.
A triangulation is a set of triangles {Ki} that covers the domain, where the intersection
of two triangles is either an edge, a corner, or the empty set. That is, the triangles do
not cover each other. Another condition is that no corner can lie on the edge of another
triangle, corners can only lie on corners. We define hi to be the length of the longest
edge in Ki, and h = max {hi}. For a rectangular mesh, constructing a triangulation is
easy. We notice that if we use right-angled isosceles triangles, two of them combined will
form a square of some size λ, and we get h = hi =

√
2λ. For Ω = [0, w]× [0, h], we define

lmin = min {w, h}, lmax = max {w, h} and r = lmax/lmin. We introduce the discretization
parameter N = lmin/λ, that is, N is the number of elements along the shortest side of
the domain. We want N to be an integer, so it makes more sense to define h with respect
to N , giving us h =

√
2lmin/N . Note that this only works if rN ∈ N, that is, if we can

fit a whole number of elements along the longest side as well. The full triangulation
will consist of 2rN2 triangles, and an example of such a triangulation with r = 1.5 and

23

Chapter 4. Methods

N = 4 can be seen in figure 4.2. This is the kind of triangulation we will be using.

Figure 4.2: Figure depicting the type of triangulation of a 2D rectangular domain we will use
when solving PDEs with the finite element method.

We must now discuss how to construct basis functions for a triangulation. Once
again, the most common kind is piecewise continuous polynomials, so that is what we
will focus on. A 2D linear polynomial is given by p(x, y) = a + bx + cy, that is, it
has three degrees of freedom. A triangle has three corners, so it makes sense to define
the polynomial within a triangle by its values at the corners. This results in a similar
definition of the basis functions as in the 1D case; if we define xi to be the coordinate
of corner i, i = 1, . . . , (N + 1)(rN + 1), then φi is the piecewise linear polynomial such
that φi(xj) = δij . This results in a two-dimensional hat function, depicted in figure 4.3.
For higher dimensional polynomials, points along the edges of the triangle must also be
used. With the basis functions defined, we have our subspace Sh, and we get that any
function v ∈ Sh can be written on the form

v =
(N+1)(rN+1)∑

i=1
viφi

for some coefficients vi. With this, we can proceed with method explained in the previous
section. The only difference appears when trying to calculate the integrals involved in
aij and bi. Now the support of the basis functions is several triangles instead of two
line segments, so the computation is more complicated. The rough idea is that you turn
the full integral into a sum of integrals over each triangle, compute the integral for one
triangle in the general case, and then transform that result to give the value for each
triangle integral. With this, the full integral becomes a sum over known values. For a
more thorough example of how this is done see [27].

Implementing the FEM from scratch would require a significant effort. Luckily,
there are many finite element frameworks that handle all the hard parts of for you,
such as the popular python package FEniCS [33] which we are going to use. For the
design function ρ and the latent variable ϑ, we will use piecewise linear polynomials.
This means we cannot represent a sharp boundary exactly, but we can get arbitrarily
close by using a finer mesh. For the linear elasticity examples, we will use piecewise
quadratic polynomials for the displacements, and for Stokes flow, we will use piecewise
linear polynomials for the pressure, and piecewise quadratic polynomials for the fluid
velocities. This is referred to as Taylor-Hood finite elements, which must be used to
guarantee that a solution exists [12].

24

4.2. Finite Element Approach

Figure 4.3: Figure depicting the two-dimensional hat function φi on a triangular mesh. From
figure 3.4 in [27], with some small modifications.

4.2.2 Linear Algebra Solvers

The FEM turns solving a linear PDE into solving a system of linear equations, but
how do you solve such a system? There are two main solver categories; direct methods
and iterative methods. Iterative methods are in general used for very large systems,
that is, when the matrix A is very large, but the downside is that they do not give
the exact solution. The direct methods are better when A is smaller, and they do
give an exact answer. As computers cannot represent numbers with infinite precision,
numerical implementations of direct methods cannot give the exact answer, but they
will in general be as close as possible. The matrices we are working with are not
that large as we are using two-dimensional problems, so we decided to use a direct
method. Most direct methods are based on Gaussian elimination, a procedure that
works by manipulating the system in ways that do not change the solution. There are
three important manipulations that preserve the solution, namely switching two rows
or columns, multiplying any row by a constant value, and adding any row or linear
multiple of a row to another row. A simple linear solver based on Gaussian elimination
is described in algorithm 3, based on an algorithm from [20]. This algorithm uses the
invariance of switching two rows to improve the stability of the algorithm using pivoting.
As mentioned, numerical implementations of direct methods will often be close to the
true solution, but there are cases where a rudimentary implementation will give a totally
wrong answer. This happens when one of the diagonal entries is close to the limits of
numerical accuracy. Pivoting is then a method to ensure large diagonal entries by either
only swapping rows, called partial pivoting, or swapping both rows and columns, called
full pivoting.

As stated previously, the matrix A from the FEM is very sparse, so storing and
operating on its zeros would be inefficient. Therefore, special algorithms have been
developed to solve linear equations involving sparse matrices. One such algorithm is
called the multifrontal method, a method based on Gaussian elimination that organizes
the factorization of A in such a way that the full factorization is performed through
partial factorizations of a sequence of dense and small submatrices [3]. The full algorithm
is complicated and describing it is outside the scope of this thesis; for more information
see [16]. We used a popular implementation of the multifrontal method called MUMPS
[43], which is one of the linear solvers accessible through FEniCS.

25

Chapter 4. Methods

Algorithm 3 Gaussian elimination with partial pivoting
Input : Matrix A ∈ Rn×n and vector b ∈ Rn.
Output: Solution vector x = (x1, . . . , xn) to the linear equation Ax = b.

Initialize E =
[
A b

]
.

for i = 1, . . . , n do
Find p, where p is the index of the largest absolute value in the i-th column at or

below the i-th row.
if p ̸= i then

Exchange row i with row p in E.
end if
for j = i+ 1, . . . , n do

Assign Ej ← Ej − aji

aii
Ei

end for
end for
for i = n, . . . , 1 do

Assign xi ← 1
Eii

(
Ei,n+1 −

n∑
j=i+1

Eijxj

)
end for

4.3 Neural Network Approach

4.3.1 Deep Neural Networks

A neural network (NN) is a function that takes in an input x ∈ Rn and returns an output
y ∈ Rm. The neural network repeatedly applies linear and non-linear transformations
to the input. Each linear transformation has many parameters, which can be tuned such
that the network approximates any function [15]. We are going to use a deep neural
network, depicted in figure 4.4, which has many fully connected layers. We define the
number of values in layer l to be nl, where l = 0, . . . , L + 1 for some number of hidden
layers L. For the input and output layers we have n0 = n and nL+1 = m. The output
of layer l is

yl = σl
(
W lyl−1 + bl

)
,

where W l ∈ Rnl×nl−1 , bl ∈ Rnl , and σ is some non-linear function, called an activation
function. Note here that y0 = x and yL+1 = y. The matrices W l, called the weights,
and the vectors bl, called the biases, contain the optimization parameters. We define

θ =
{

W 1, . . . ,W L+1, b1, . . . , bL+1
}

and write the neural network as the function uNN (x; θ).
To tune the parameters, called training the neural network, we typically use known

correct outputs, called training data. If we have a set

X = {(x1,y1), . . . , (xk,yk)}

of input output pairs, we can construct a cost function

C(θ) = 1
k

k∑
i=1
||uNN (xi; θ)− yi||2

26

4.3. Neural Network Approach

Figure 4.4: Figure depicting a fully connected deep neural network. From figure 1 in [24], with
some small modifications.

which calculates the mean squared error. Training the network is then done by
calculating the gradient ∇θC, and then using some form of gradient descent algorithm
to minimize the cost. The gradient is typically calculated using backpropagation, a type
of automatic differentiation that uses the chain rule to calculate the gradient one layer at
a time. There exists tools made specifically for training neural networks, like the python
package PyTorch [21] that we will use.

When training a neural network, the network might overfit the training data, which
means it will give good results on the training data, but terrible results for other inputs.
Figure 4.5 shows an example of overfitting when approximating a sinusoidal function
with a high-degree polynomial. To detect overfitting, it is common to split the data into
two sets, one containing training data and one containing test data. The network gets
trained on the training data, and then tested on the test data to check if it performs
well on unseen data [23].

Figure 4.5: Figure depicting underfitting and overfitting of polynomial approximations, the blue
curves, to a sinusoidal function, the orange curve. Downloaded from https://compphysics.github.
io/MachineLearning/doc/LectureNotes/_build/html/_images/chapter3_64_1.png.

The architecture of a neural network is defined by a number of hyperparameters,
such as the number of layers or number of nodes per layer. To get the best result, you

27

https://compphysics.github.io/MachineLearning/doc/LectureNotes/_build/html/ _images/chapter3_64_1.png
https://compphysics.github.io/MachineLearning/doc/LectureNotes/_build/html/ _images/chapter3_64_1.png

Chapter 4. Methods

therefore need to do hyperparameter optimization. While it is possible to find decent
hyperparameters manually, a better approach is to use Bayesian optimization, which only
tests promising candidates [7]. When testing many combinations of hyperparameters,
there is a chance the hyperparameters overfit the test data. To avoid this, some data can
be put aside into a set of validation data, which is used while optimizing hyperparameters
[23]. This ensures that the test data is used only once, and therefore gives a good estimate
for the network’s performance on real world data.

4.3.2 Physics-Informed Neural Networks

When solving a PDE using a neural network, we cannot use the standard training data
approach, as that would require us to have already solved the PDE. We must instead
use a form of the PDE as the cost function directly. One possibility is to use a physics-
informed neural network (PINN) [34], where you use DuNN − f to represent how close
uNN is to solving the PDE Du = f . The cost function is then

C(θ) = 1
k

k∑
i=1
||DuNN (xi; θ)− f(xi)||2,

where xi ∈ Ω are some training points, typically evenly distributed in Ω.
There are two ways of dealing with boundary conditions. If you require that u = g

on ΓD ⊂ δΩ, then you can either penalize values not equal to g, or enforce the boundary
condition via additive decomposition. For the first approach, we divide the set of training
points X into two sets, Xc and Xb containing points inside and on the boundary
respectively. The modified cost function is then

C(θ) = 1
kc

kc∑
i=1
||DuNN (xc

i ; θ)− f(xc
i)||2 + τ

kb

kb∑
i=1
||uNN (xb

i ; θ)− g(xb
i)||2,

where τ denotes a penalty parameter.
The other approach, additive decomposition, avoids defining an additional

hyperparameter. Instead, we can label the neural network function ũNN , and define

uNN = m⊙ ũNN + g,

where m(x) = 0 ∀x ∈ ΓD and ⊙ denotes element-wise multiplication. With this method,
uNN is guaranteed to satisfy the Dirichlet boundary conditions, so this is the approach
we will use.

4.3.3 The Deep Energy Method

PINNs use the strong form of a PDE, which might have high order differential operators.
If the PDE is a variational problem, we could instead use the energy functional as our
cost function, as we know finding its minimum is the same as solving the PDE. This
results in what is called a variational physics-informed neural network (VPINN) [26],
and is called the deep energy method (DEM) [36]. Another benefit of this approach is
that it makes implementing Neumann boundary conditions trivial, as those are simply
added as an additional term in the energy functional.

As there are many ways of constructing neural networks, we will base our
implementation on the one described by the paper Deep energy method in topology
optimization applications [24], which used the DEM for linear elasticity topology

28

4.3. Neural Network Approach

optimization. The NN architecture used in the paper is a simple fully connected
feed-forward network, where the Fourier transform is applied to the input features to
transform them to the frequency domain. The use of such Fourier features has been
shown to improve the accuracy of PINNs [44]. The NN has the same number of neurons
in each hidden layer, and always uses the same activation function. All the biases are
initialized to zero, and the weights are initialized with a normal distribution with a
constant standard deviation. The Fourier features are also initialized with a normal
distribution, but with a separate standard deviation. This means the neural network
has seven hyperparameters, namely the step size and maximum number of iterations for
the parameter optimizer, the number of hidden layers, the number of neurons in a hidden
layer, the activation function, and the two standard deviations. These hyperparameters
were optimized using the python package hyperopt [7].

To evaluate the energy functional, Gauss quadrature integration was used, which
means the training data formed quadrilateral isoparametric finite elements. The domain
Ω = [0, w] × [0, h] was divided into a mesh with rectangular faces, with Nx rectangles
in the x-direction and Ny rectangles in the y-direction. The neural network was then
evaluated at each node in the mesh, the density was defined at each face in the mesh, and
the gradient of u was calculated using the gradients of the finite element shape functions.
No testing or validation data was used, so there is no guarantee that the network will not
overfit. This is fine, the results from the training data can safely be used, but it means
the neural network cannot be evaluated on any other points. To see why this is true,
we can look at the degree 15 case in figure 4.5. There, we see that evaluating an overfit
model on the sampled points gives values close to the true function, while evaluating it
on any other points can give a totally wrong result. The only consequence of the lack of
testing and validation data is therefore a limited resolution. In our implementation, we
only used square faces to match the FEM, which means the mesh for the DEM is also
parameterized by the number of squares along the shortest side of the domain N . Note
that the role N plays here is very different to the role it plays for the FEM. Unlike the
FEM, there is no guarantee that the approximate solution approaches the true solution
as N →∞. Instead, increasing N has two main benefits; it improves the accuracy of the
energy functional evaluation, and it increases the resolution of the solution. Increasing N
also has a potential drawback; as the neural network is evaluated at more points, it must
give a good result for more input values, making training the network more difficult. A
neural network can in theory approximate any function [15], but this requires that the
number of parameters in the network goes to infinity, not just the amount of training
data.

As the DEM is a finite dimensional method, it cannot use the Helmholtz filter to
filter ρ. Instead, He et al. used a filter matrix F defined as follows

Fij = qij

N∑
k=1

qik

,

qij = max(R− ||xi − xj ||),

where R is some filter radius. They then filtered rho using ρ̃ = Fρ, and filtered the
objective gradient by multiplying it with F T . This filter is the discretized form of a
convolution that can also be defined implicitly as a solution of the Helmholtz PDE [28].
This means that He et al. used a discretized but otherwise equivalent filter to the one
we have introduced. The only difference is that the filter radius is different, but from
[28] we get the conversion factor R = 2

√
3ϵ. This is the reason why the filter radius for

29

Chapter 4. Methods

the bridge and short cantilever in section 3.1.3 is defined as such; He et al. used the
filter radius R = 0.25, which is equivalent to ϵ = 0.25/2

√
3.

To train the neural network, the L-BFGS optimization algorithm was used, which
is a version of the BFGS algorithm that uses a limited amount of computer memory.
The BFGS algorithm is a quasi-Newton method, that is, a method that uses Newton’s
method with some approximation of the true hessian. It can be written as

xk+1 = xk − αkB
−1
k ∇f(xk),

where αk is some step size, f is the function you want to minimize, and Bk is an
approximation of the hessian matrix of f at xk, defined by the equation

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk).

A more efficient formulation can be defined that directly finds B−1
k+1 using B−1

k [19],
described in algorithm 4.

Algorithm 4 Broyden-Fletcher-Goldfarb-Shanno algorithm
Input : Function f : Rn → R, initial guess x0 ∈ Rn, and approximate inverted
Hessian matrix B−1 ∈ Rn×n.
Output: Approximate minimum xk of f .

Initialize k = 0.
while stopping criterion not met do

pk ← −B−1
k ∇f(xk).

Find a step size αk that approximates argmin
α

f(xk + αpk).
sk ← αkpk.
xk+1 ← xk + sk.
yk ← ∇f(xk+1)−∇f(xk).
B−1

k+1 ← B−1
k +

(
1 + yT

k B−1
k

yk

sT
k

yk

)
sksT

k

sT
k

yk
− skyT

k B−1
k

+B−1
k

yksT
k

sT
k

yk

k ← k + 1.
end while

The stopping criterion for the iteration is complicated, so we must first introduce
some notation. Let Ψ = {ψ1, . . . , ψn} be a set of values from the energy functional
evaluated at the output of the neural network such that ψi is the value for iteration
i. Further, let M be some positive integer. As long as n < 2M , the iteration always
continues. Otherwise, the quantities

µ1 = 1
M

n−M∑
i=n+1−2M

ψi, µ2 = 1
M

n∑
i=n+1−M

ψi

are calculated. The iteration is then stopped if either |µ2| < 10−6 or |µ1−µ2|
|µ2| < 5 · 10−5.

This means the iteration stops if the values are approaching zero, or if the difference
between consecutive iterations is small, with the average being used to reduce noise.
The first condition works for a PINN where the minimum cost is always zero, but the
minimum of the energy functional can be a non-zero value, so the first condition serves
no purpose. In the code, M = 10 was used.

In the paper, He et al. optimized the design function using the method of moving
asymptotes (MMA), a well known method that was developed for structural optimization

30

4.3. Neural Network Approach

[42]. This method also relies on the gradient of the design function, so replacing MMA
with EMD in the source code provided is trivial.

The objective function used in the paper seems to be different compared to the one
we introduced. They defined the objective as

ϕ(ρ̃; u) = 1
2

∫
Ω
r(ρ̃)σ : ε dx

instead of
ϕ(ρ̃; u) =

∫
Ω

f · u dx +
∫

δΩ
t · u ds .

While these expressions look very different, they are almost the same. From the weak
form of the linear elasticity equation, (3.5), we get that if u solves the equation, then∫

Ω
r(ρ̃)

(
λ||∇ · u||2 + 2µ||ε||2

)
dx =

∫
Ω

f · u dx +
∫

δΩ
t · u ds .

This is because the equation holds for all v, including v = u. Note that this only works
because u and v come from the same function space. Using the definitions of σ and ε,
(3.4) and (3.3), we get

σ : ε = λ||∇ · u||2 + 2µ||ε||2.
Combining these two equations, it is easy to see that the objective they used is exactly
half the objective we introduced. When minimizing a function, any constant factors do
not matter, so the two objectives give identical results.

4.3.4 The DEM and Stokes Flow

Instead of using the full Stokes flow energy functional (3.12), we instead used the simpler
zero-divergence functional (3.13). This has the benefit that the neural network does not
need to output a pressure as well as fluid velocities, simplifying the training process.
If needed, the pressure can be recovered using equation (3.9), but as the Stokes flow
objective does not depend on the pressure, we have not done so. A drawback of this
approach is that there is, as far as we know, no way of guaranteeing that the output
of a neural network is divergence-free. This means we had to add the zero-divergence
condition as a penalty to the cost function, giving us the functional

ψ(u; ρ) = 1
2

∫
Ω
r(ρ)||u||2 + µ||∇u||2 + τ ||∇ · u||2 dx ,

where τ is a penalization parameter, which acts as an additional hyperparameter that
must be tuned.

4.3.5 Numerical Integration

Using Gauss quadrature integration and the gradients of the finite element shape
functions, we can calculate any integral on the form

∫
Ω L(x,u,∇u) dx, which lets us

evaluate all energy functionals. There are however two integrals which require special
consideration, namely ∫

Ω
f · u dx and

∫
Γt

t · u ds .

While both of these integrals can be calculated using the aforementioned algorithm,
that would not be the most accurate way of computing them. Γt is only a small segment
of the full boundary, and f is a step function which is zero everywhere except in a
small circular region. As we are integrating over such small areas, we could get large
discretization errors if we are not careful.

31

Chapter 4. Methods

Traction Integral

We are going to focus on the traction integral first. As it is an integral over a subset of
the boundary of a 2D rectangle, we only need to develop an algorithm that works in one
dimension. We are therefore going to develop an algorithm for the integral∫

Dt

g(x) dx ,

where Dt =
[
c− l

2 , c+ l
2

]
⊂ [0, w] for some real numbers c, l, and w. This integral is

equivalent to
c+ l

2∫
c− l

2

g(x) dx ,

and is easy to calculate numerically by discretizing Dt; if we discretize it into N intervals,
we can use the trapezoidal rule as follows

br∫
bl

g(x) dx ≈ trapezoidalg
(
{bl + i∆x}Ni=0

)

=
N−1∑
i=0

g(bl + i∆x) + g(bl + (i+ 1)∆x)
2 ∆x,

where bl = c− l
2 , br = c+ l

2 , ∆x = l
N .

The problem is that we have instead discretized the entire domain [0, w] into N
intervals, giving us the points X = {i∆x}Ni=0, where ∆x = w

N . Restricting the integral
is the same as finding the points Xt ⊂ X where inf Xt ≥ bl and supXt ≤ br. This gives
us

Xt = {ML∆x, . . . ,MR∆x},
where

ML =
⌈
bl

∆x

⌉
, MR =

⌊
br

∆x

⌋
.

We could use the trapezoidal rule on Xt, that is what He et al. used, but that
gives inaccurate results as we would end up integrating over a smaller region due to the
small differences between the bounds of Xt and the actual bounds of the integral. These
differences are

ϵL = ML∆x− bl, ϵR = br −MR∆x.
To integrate over these regions we chose to use linear interpolation, which we can use as
we know the values of g((ML− 1)∆x) and g((MR + 1)∆x). If we assume that g is linear
between g((ML − 1)∆x) and g(ML∆x), we get

g(bl) = g((ML − 1)∆x)ML∆x− bl

∆x + g(ML∆x)bl − (ML − 1)∆x
∆x

= g((ML − 1)∆x) ϵL∆x + g(ML∆x)∆x− ϵL
∆x ,

and similarly for the right side

g(br) = g(MR∆x)∆x− ϵR
∆x + g((MR + 1)∆x) ϵR∆x.

32

4.3. Neural Network Approach

If we use the trapezoidal rule with a non-uniform step size, we get the integration
algorithm we will use for the traction integral

br∫
bl

g(x) dx ≈ g(bl) + g(ML∆x)
2 ϵL +

MR−1∑
i=ML

g(i∆x) + g((i+ 1)∆x)
2 ∆x+ g(MR∆x) + g(br)

2 ϵR

≈
g((ML − 1)∆x) ϵL

∆x + g(ML∆x)2∆x−ϵL
∆x

2 ϵL +
g(MR∆x)2∆x−ϵR

∆x + g((MR + 1)∆x) ϵR
∆x

2 ϵR

+
MR−1∑
i=ML

g(i∆x) + g((i+ 1)∆x)
2 ∆x

= lerptrapzg(Dt, Xt).

To relate this to the traction integral, we first define

uside(t) =


u(0, t) | side = left
u(w, t) | side = right
u(t, h) | side = top
u(t, 0) | side = bottom

,

Xt,side =


{⌈

bl
∆x

⌉
∆x, . . . ,

⌊
br
∆x

⌋
∆x
}
| side = top or bottom{⌈

bl
∆y

⌉
∆y, . . . ,

⌊
br
∆y

⌋
∆y
}
| side = left or right

.

With this, we get

∫
Γt,side

t · u ds ≈ t · lerptrapzuside(Dt, Xt,side).

Body Force Integral

The approach we used previously does not work with the body force integral
∫

Ω f ·u dx
as we use

f(x, y; c, r) =
{

f̂ | (x− cx)2 + (y − cy)2 ≤ r2

0 | Otherwise ,

which means the integral cannot be reinterpreted as one dimensional. We must therefore
work with the full discretization

X = {i∆x}Nx
i=1 × {j∆y}

Ny

j=1.

Trapezoidal integration over this domain gives

∫
Ω
g(x) dx ≈

Nx−1∑
i=1

Ny−1∑
j=1

gi,j + gi+1,j + gi,j+1 + gi+1,j+1
4 ∆x∆y

=
Nx−1∑
i=1

Ny−1∑
j=1

ḡi,j∆x∆y,

where gi,j = g(i∆x, j∆y). This sum can be interpreted as calculating the weight of
a surface, where ḡi,j represents the area density of the surface section Si,j with area

33

Chapter 4. Methods

A(Si,j) = ∆x∆y. The total weight is then the sum of the mass of each section. With
this interpretation, we can imagine a function C which gives the area of Si,j that is
covered by the body force circle. This means that, if the circle covers a fraction p of
the surface Si,j , C(Si,j) = p∆x∆y. The body force integral can then be computed by
replacing A(Si,j) with C(Si,j), giving us

∫
Ω

f · u dx ≈ f̂ ·
Nx−1∑
i=1

Ny−1∑
j=1

ūi,jC(Si,j).

The difficulty lies in calculating C(Si,j) = Ci,j . We opted for a simple approach,
where we found the points where the circle boundary intersects the grid lines, and then
approximate the circle area with triangles. To get the intersections, we used the formula
for the circle and solved it for x to get the horizontal intersections, and for y to get
the vertical intersections. We classified the triangular approximations into three types,
depending on which side the circle enters and exits the surface section. Type 2 is when
the circle enters and leaves the same side, type 1 is when the circle enters and leaves
different sides and the point closest to the intersection points is inside the circle, and
type 3 is when the circle enters and leaves different sides and the point closest to the
intersection points is outside the circle. Figure 4.6 depicts the three types. We can then

Figure 4.6: The three types of intersections you need to keep track of to approximate circle areas
with triangles. The green point p1 is where the circle enters the surface, and the red point p2
is where the circle exits the surface. The c-points are the corner points needed to construct the
triangles.

find the areas

Type 1: A = ||p1 − c||2||p2 − c||2
2 ,

Type 2: A = ||c1 − c2||2
||p1 − c1||2 + ||p2 − c2||2

2 ,

Type 3: A = ∆x∆y − ||p1 − c||2||p2 − c||2
2 ,

where c is the corner point closest to p1+p2
2 , c1 is the corner point inside the circle that

is closest to p1, and c2 is the corner point inside the circle that is closest to p2. Figure
4.7 shows how the triangular approximations looks like.

This algorithm does not calculate areas that are fully inside or outside the circle,
but that can easily be done using the corners of a surface section. If each corner is
fully inside the circle, the entire surface section is covered, and if a surface section is
neither inside nor on the boundary, it must be fully outside the circle. A nice property of

34

4.3. Neural Network Approach

Figure 4.7: Figure depicting the triangular approximations of the area of a grid face a circle
covers. Red triangles represent negative area. The black dots on the boundary show where the
circle boundary intersects the grid, and the black dot inside the circle is located at its center.

this algorithm is that we can precompute Ci,j . We can also calculate the indices where
Ci,j ̸= 0, and use only those when calculating the integral. This avoids unnecessary
computation when the circle is much smaller than the domain.

35

Chapter 4. Methods

36

Chapter 5

Implementation

The code we wrote is divided into three folders, src, FEM_src, and DEM_src, containing
the code for the EMD algorithm, the FEM-based solver, and the DEM-based solver
respectively. The src folder also includes some utility functions for printing and timing,
as well as the two penalizers.

5.1 src

As the DEM and the FEM are very different methods, the EMD implementation in src
is an abstract base class, named Solver, which has many functions that are implemented
separately in DEM_src and FEM_src, called DEMSolver and FEMSolver respectively. The
Solver class takes in two arguments; the path to a design file and the discretization
parameter N . A design file is a JSON file where details about the topology optimization
problem is detailed, such as if the state equation is from linear elasticity or Stokes flow,
what the domain size is, what the volume fraction is, and so on. It also details parameters
specific to the state equation, such as what the traction is or where the boundary flows
are. For a more detailed description of the design file, see the description in the GitHub
repository linked in appendix A.

Once a solver is initialized, calling the solve function will solve the topology
optimization problem and save the output of each iteration to an output folder. The
solve function is implemented as

1 def solve(self):
2 max_iterations = 1000
3 objective_increasing_factor = 2
4 max_iterations_without_improvement = 50
5

6 objective_timer = Timer()
7

8 psi = logit(self.to_array(self.rho))
9 previous_psi = None

10

11 for penalty in self.parameters.penalties:
12 self.problem.set_penalization(penalty)
13

14 objective_timer.restart()
15 objectives = [self.problem.calculate_objective(self.rho)]
16 times = [objective_timer.get_time_seconds()]
17

18 k = 0

37

Chapter 5. Implementation

19 exit_condition = ""
20 for k in range(max_iterations):
21 if k % self.skip_multiple == 0:
22 self.save_iteration(self.rho, objectives[-1], k, penalty)
23

24 objective_timer.restart()
25 previous_psi = psi.copy()
26 try:
27 psi = self.step(previous_psi, self.step_size_at_iter(k))
28 except ValueError as e:
29 exit_condition = str(e)
30 break
31

32 self.set_from_array(self.rho, expit(psi))
33

34 objectives.append(self.problem.calculate_objective(self.rho))
35 times.append(objective_timer.get_time_seconds())
36

37 if np.isnan(objectives[-1]):
38 exit_condition = "Objective is NaN"
39 break
40

41 min_index = int(np.argmin(objectives))
42 min_objective = objectives[min_index]
43

44 if objectives[-1] > objective_increasing_factor * min_objective:
45 exit_condition = "Objective is increasing"
46 break
47

48 if k >= min_index + max_iterations_without_improvement:
49 exit_condition = "Objective is not decreasing"
50 break
51

52 difference = np.sqrt(
53 self.integrate((self.to_array(self.rho) - expit(previous_psi)) ** 2)
54)
55

56 if difference < self.tolerance(k):
57 exit_condition = "Convergence treshold reached"
58 break
59 else:
60 exit_condition = "Iteration did not converge"
61

62 self.save_iteration(self.rho, objectives[-1], k + 1, penalty)
63 self.save_result(objectives, times, penalty, exit_condition)

To save space, we have removed printing and comments. We will do this with all the
code segments in this chapter. In the above code, expit implements σ(x) and logit
implements σ−1(x). The functions to_array, set_from_array and integrate are all
abstract methods. The object self.problem is an instance of a Problem class, which is
an abstract base class that encapsulates a state equation. The function step contains
the core logic of the EDM:

1 def step(self, previous_psi: npt.NDArray, step_size: float):
2 objective_gradient = self.to_array(self.problem.calculate_objective_gradient())
3 half_step = previous_psi - step_size * objective_gradient
4 return self.project(half_step, self.volume)
5

6 def project(self, half_step: npt.NDArray, volume: float):

38

5.1. src

7 def error(c: float):
8 return self.integrate(expit(half_step + c)) - volume
9

10 def error_derivative(c: float):
11 return self.integrate(expit_diff(half_step + c))
12

13 try:
14 c, result = optimize.newton(
15 error,
16 0,
17 error_derivative,
18 tol=1e-12,
19 full_output=True,
20)
21 if result.converged:
22 return half_step + c
23 except RuntimeError:
24 pass
25

26 c, result = smart_brentq(error, 2, 2000)
27 if not result.converged:
28 raise ValueError("Projection failed to converge")
29

30 return half_step + c

Here, expit_diff implements σ′(x), and smart_brentq uses the implementation of
Brent’s algorithm in scipy.optimize.brentq together with the boundary values from
algorithm 2:

1 def smart_brentq(f: Callable[[float], float], initial_radius: float, max_radius: float):
2 r = initial_radius
3 while True:
4 if r > max_radius:
5 raise ValueError(
6 "f(-max_radius) and f(max_radius) must have different signs!"
7)
8

9 try:
10 return optimize.brentq(f, -r, r, full_output=True)
11 except ValueError:
12 r *= 2

The Problem class just contains four abstract methods:

1 class Problem(ABC):
2 @abstractmethod
3 def set_penalization(self, penalization: float):
4 ...
5

6 @abstractmethod
7 def calculate_objective_gradient(self) -> Any:
8 ...
9

10 @abstractmethod
11 def calculate_objective(self, rho: Any) -> float:
12 ...
13

14 @abstractmethod
15 def forward(self, rho: Any) -> Any:
16 ...

39

Chapter 5. Implementation

The function set_penalization sets the penalization value, which is p for linear
elasticity and q for Stokes flow. The function forward solves the state equation,
calculate_objective calculates ϕ, and calculate_objective_gradient calculates
∇ϕ. Note that calculate_objective_gradient does not take in ρ. This is because
calculating the gradient always happens after calculating the objective, and much of the
computation to calculate the objective can be reused when calculating the gradient. As
with the Solver class, these abstract methods are implemented separately in DEM_src
and FEM_src.

5.2 FEM_src

To solve PDEs with FEniCS, we made the class SmartMumpsSolver. This class uses
MUMPS instead of the default FEniCS solver, as that solver has a bug where it can
only use up to about 5 GB of RAM. SmartMumpsSolver also precalculates A or b if
a(u, v) or l(v) are iteration independent, which saves a bit of redundant computation.
The class is defined as follows:

1 import dolfin as df
2 from ufl.form import Form
3 from ufl.argument import Argument
4

5 class SmartMumpsSolver:
6 def __init__(
7 self,
8 a_func: Callable[[Argument, Argument, Any | None], Form],
9 l_func: Callable[[Argument, Any | None], Form],

10 function_space: df.FunctionSpace,
11 boundary_conditions: list[df.DirichletBC] | None = None,
12 a_has_no_args: bool = False,
13 l_has_no_args: bool = False,
14):
15 self.a_func = a_func
16 self.l_func = l_func
17 self.function_space = function_space
18

19 if boundary_conditions is None:
20 self.boundary_conditions = []
21 else:
22 self.boundary_conditions = boundary_conditions
23

24 self.A = None
25 self.b = None
26

27 if a_has_no_args or l_has_no_args:
28 trial = df.TrialFunction(self.function_space)
29 test = df.TestFunction(self.function_space)
30

31 if a_has_no_args:
32 a = self.a_func(trial, test, None)
33 self.A = df.assemble(a)
34

35 if l_has_no_args:
36 l = self.l_func(test, None)
37 self.b = df.assemble(l)
38

39 def solve(self, *, a_arg: Any | None = None, l_arg: Any | None = None):
40 A = self.A

40

5.2. FEM_src

41 b = self.b
42

43 if self.A is None or self.b is None:
44 trial = df.TrialFunction(self.function_space)
45 test = df.TestFunction(self.function_space)
46

47 if self.A is None:
48 a = self.a_func(trial, test, a_arg)
49 A = df.assemble(a)
50

51 if self.b is None:
52 l = self.l_func(test, l_arg)
53 b = df.assemble(l)
54

55 _ = [bc.apply(A, b) for bc in self.boundary_conditions]
56

57 solution = df.Function(self.function_space)
58 solution_vector = solution.vector()
59

60 solver = df.LUSolver("mumps")
61 solver.solve(A, solution_vector, b)
62

63 return solution

The Helmholtz filter is then simply implemented as

1 class HelmholtzFilter:
2 def __init__(self, epsilon: float, function_space: df.FunctionSpace):
3 def a_func(trial, test, _):
4 return (
5 epsilon**2 * df.inner(df.grad(trial), df.grad(test))
6 + df.inner(trial, test)
7) * df.dx
8

9 def l_func(test, input_function):
10 return df.inner(input_function, test) * df.dx
11

12 self.solver = SmartMumpsSolver(
13 a_func, l_func, function_space, a_has_no_args=True
14)
15

16 def apply(self, input_function: df.Function):
17 return self.solver.solve(l_arg=input_function)

The children of the Problem class for linear elasticity and Stokes flow are similar,
so we will only show the one for Stokes flow, named FluidProblem. As with the
HelmholtzFilter, we create a SmartMumpsSolver:

1 def create_solver(self):
2 def a_func(trial, test, rho):
3 (u, p) = df.split(trial)
4 (v, q) = df.split(test)
5

6 return (
7 self.penalizer(rho) * df.inner(u, v)
8 + df.inner(df.grad(u), df.grad(v))
9 + df.inner(df.grad(p), v)

10 + df.inner(df.div(u), q)
11) * df.dx
12

41

Chapter 5. Implementation

13 def l_func(test, _):
14 return df.inner(test, df.Constant([0, 0, 0])) * df.dx
15

16 return SmartMumpsSolver(
17 a_func,
18 l_func,
19 self.boundary_conditions,
20 self.solution_space,
21 l_has_no_args=True,
22)

We use a body force of 0 in the Stokes examples, so l(v) = 0. Unfortunately, just
returning 0 does not work, which is why l_func is defined so weirdly.

The functions responsible for calculating the objective and gradient are defined as
follows

1 def calculate_objective_gradient(self):
2 return df.project(
3 0.5 * self.penalizer.derivative(self.rho) * self.u**2,
4 self.rho.function_space(),
5)
6

7 def calculate_objective(self, rho):
8 self.rho = rho
9 (self.u, _) = df.split(self.forward(rho))

10

11 t1 = self.penalizer(rho) * self.u**2
12 t2 = self.viscosity * df.grad(self.u) ** 2
13 objective = df.assemble(0.5 * (t1 + t2) * df.dx)
14

15 return float(objective)
16

17 def forward(self, rho):
18 return self.solver.solve(a_arg=rho)

Here, the reason for why calculate_objective_gradient does not take in rho is clear;
the fluid velocities are saved after calculating the objective, and then reused when
calculating the gradient.

The boundary conditions and function space are created by the functions

1 def create_boundary_conditions(self):
2 flow_sides = [flow.side for flow in self.parameters.flows]
3 self.marker.add(SidesDomain(self.domain_size, flow_sides), "flow")
4

5 no_slip_sides = list(set(Side.get_all()).difference(flow_sides))
6 self.marker.add(SidesDomain(self.domain_size, no_slip_sides), "no_slip")
7

8 self.boundary_flows = BoundaryFlows(
9 self.domain_size, self.parameters.flows, degree=2

10)
11

12 boundary_conditions = [
13 df.DirichletBC(
14 self.solution_space.sub(0),
15 self.boundary_flows,
16 *self.marker.get("flow"),
17),
18 df.DirichletBC(
19 self.solution_space.sub(0),

42

5.3. DEM_src

20 df.Constant((0.0, 0.0)),
21 *self.marker.get("no_slip"),
22),
23]
24

25 return boundary_conditions
26

27 def create_solution_space(self):
28 velocity_space = df.VectorElement("CG", self.mesh.ufl_cell(), 2)
29 pressure_space = df.FiniteElement("CG", self.mesh.ufl_cell(), 1)
30 return df.FunctionSpace(self.mesh, velocity_space * pressure_space)

Where BoundaryFlows implements the boundary flows as an expression:

1 class BoundaryFlows(df.UserExpression):
2 def __init__(self, domain_size: tuple[float, float], flows: list[Flow], **kwargs):
3 super().__init__(**kwargs)
4 self.domain_size = domain_size
5 self.flows = flows
6

7 def get_flow(self, position: float, center: float, length: float, rate: float):
8 t = position - center
9 if -length / 2 < t < length / 2:

10 return rate * (1 - (2 * t / length) ** 2)
11 return 0
12

13 def eval(self, values, pos):
14 values[0], values[1] = 0.0, 0.0
15

16 for side, center, length, rate in [f.to_tuple() for f in self.flows]:
17 if side == Side.LEFT:
18 if pos[0] == 0.0:
19 values[0] += self.get_flow(pos[1], center, length, rate)
20 elif side == Side.RIGHT:
21 if pos[0] == self.domain_size[0]:
22 values[0] -= self.get_flow(pos[1], center, length, rate)
23 elif side == Side.TOP:
24 if pos[1] == self.domain_size[1]:
25 values[1] -= self.get_flow(pos[0], center, length, rate)
26 elif side == Side.BOTTOM:
27 if pos[1] == 0:
28 values[1] += self.get_flow(pos[0], center, length, rate)
29 else:
30 raise ValueError(f"Malformed side: {side}")
31

32 def value_shape(self):
33 return (2,)

5.3 DEM_src

Our implementation of the DEM is based on the source code provided by [24]. We started
by copying all the code into our codebase, and then removed all unnecessary code and
cleaned it up to avoid sketchy global values. After that, we modified the program such
that it used EMD instead of MMS, and made the code more generic so it could handle all
the examples we needed. This means that the code in DEM_src is almost unrecognizable
compared to what we started with, but you can see some of the same structures. While
working with the DEM source code, we found and fixed two bugs, described in appendix

43

Chapter 5. Implementation

C. One of these bugs is in the calculation of the traction integral, and is the reason we
developed a more robust integration algorithm for that integral.

Solving PDEs with a VPINN is done by the DeepEnergyMethod class, which has a
train_model method which takes in ρ and returns the objective ϕ and the gradient ∇ϕ:

1 def train_model(self, rho: npt.NDArray[np.float64], mesh: Mesh):
2 x = torch.from_numpy(flatten([mesh.x_grid, mesh.y_grid])).float()
3 x = x.to(self.device)
4 x.requires_grad_(True)
5

6 density = torch.from_numpy(rho).float()
7 density = torch.reshape(density, mesh.intervals).to(self.device)
8

9 optimizer_LBFGS = torch.optim.LBFGS(
10 self.model.parameters(),
11 lr=self.nn_parameters.learning_rate,
12 max_iter=20,
13 line_search_fn="strong_wolfe",
14)
15

16 def closure_generator(t: int):
17 def closure():
18 u_pred = self.get_u(x)
19 u_pred.double()
20

21 loss = self.objective_calculator.calculate_energy(
22 u_pred, mesh.shape, density
23)
24 optimizer_LBFGS.zero_grad()
25 loss.backward()
26

27 self.loss_array.append(loss.data.cpu())
28

29 return float(loss)
30

31 return closure
32

33 for t in range(self.nn_parameters.iteration_count):
34 optimizer_LBFGS.step(closure_generator(t))
35

36 if self.convergence_check(
37 self.loss_array,
38 self.nn_parameters.convergence_tolerance,
39):
40 break
41

42 return self.objective_calculator.calculate_objective_and_gradient(
43 self.get_u(x), mesh.shape, density
44)

There are two important parts of this function. The first is self.objective_calculator,
which is an instance of an ObjectiveCalculator, a class that contains logic for
calculating the objective and objective gradient. It is quite complicated, so we
will first explain the other important part, self.get_u, which basically just returns
self.dirichlet_enforcer(self.model(x)). self.dirichlet_enforcer implements
additive decomposition, and self.model is an instance of a MultiLayerNet, which is
implemented as

44

5.3. DEM_src

1 class MultiLayerNet(torch.nn.Module):
2 def __init__(self, input_size, output_size, parameters: NNParameters):
3 super().__init__()
4

5 neuron_count = parameters.neuron_count
6 weight_deviation = parameters.weight_deviation
7 fourier_deviation = parameters.fourier_deviation
8

9 self.layer_count = parameters.layer_count
10 self.activation_function = getattr(torch, parameters.activation_function)
11 self.encoding = rff.layers.GaussianEncoding(
12 sigma=fourier_deviation, input_size=input_size, encoded_size=neuron_count//2
13)
14

15 self.linears = torch.nn.ModuleList()
16 for i in range(self.layer_count):
17 linear_inputs = input_size if i == 0 else neuron_count
18 linear_outputs = output_size if i == self.layer_count - 1 else neuron_count
19 self.linears.append(torch.nn.Linear(linear_inputs, linear_outputs))
20

21 torch.nn.init.constant_(self.linears[i].bias, 0.0)
22 torch.nn.init.normal_(self.linears[i].weight, mean=0, std=weight_deviation)
23

24 def forward(self, x: torch.Tensor) -> torch.Tensor:
25 y = self.encoding(x)
26 for i in range(1, self.layer_count - 1):
27 y = self.activation_function(self.linears[i](y))
28 y = self.linears[-1](y)
29

30 return y

ObjectiveCalculator is an abstract base class, as the objective and gradient must
be implemented separately for the linear elasticity and Stokes flow case. Its most
important functions are

1 def get_grad_u(
2 self, gauss_point: int, point_lists: list[list[torch.Tensor]]
3) -> tuple[torch.Tensor, torch.Tensor]:
4 dxdy_list = np.array(
5 [
6 np.matmul(self.Jinv, dN_dsy[:, gauss_point].reshape((2, 1)))
7 for dN_dsy in self.shape_derivatives
8]
9).reshape((len(self.shape_derivatives), 2))

10

11 shape = point_lists[0][0].shape
12 u = torch.zeros((len(point_lists), *shape))
13 gradient = torch.zeros((len(point_lists), 2, *shape))
14

15 for i in range(len(self.shape_derivatives)):
16 dx, dy = dxdy_list[i, :]
17

18 for j, Ux_list in enumerate(point_lists):
19 Ux = Ux_list[i]
20

21 u[j, :, :] += Ux
22

23 gradient[j, 0, :, :] += Ux * dx
24 gradient[j, 1, :, :] += Ux * dy
25

45

Chapter 5. Implementation

26 u /= len(self.shape_derivatives)
27

28 return u, gradient
29

30 def value_at_gauss_point(
31 self,
32 function: Callable[[torch.Tensor, torch.Tensor], list[torch.Tensor]],
33 gauss_point: int,
34 point_lists: list[list[torch.Tensor]],
35):
36 u, grad = self.get_grad_u(gauss_point, point_lists)
37 return function(u, grad)
38

39 def evaluate(
40 self,
41 u: torch.Tensor,
42 shape: tuple[int, int],
43 function: Callable[[torch.Tensor, torch.Tensor], list[torch.Tensor]],
44):
45 _, dim = u.shape
46 U = torch.transpose(u.reshape(shape[1], shape[0], dim), 0, 1)
47

48 point_lists = self.get_gauss_points(U)
49

50 values = self.value_at_gauss_point(function, 0, point_lists)
51 for i in range(1, len(self.shape_derivatives)):
52 for j, v in enumerate(self.value_at_gauss_point(function, i, point_lists)):
53 values[j] += v
54

55 return values

The evaluate function can then be used to calculate the integral of functions that
depend on u and ∇u.

We will again only show the Stokes flow problem. It starts with creating an instance
of a DeepEnergyMethod:

1 def create_dem_parameters(self):
2 dirichlet_enforcer = FluidEnforcer(
3 self.parameters, self.mesh, self.device
4)
5 objective_calculator = FluidEnergy(self.mesh, self.parameters.viscosity, 500)
6

7 return dirichlet_enforcer, objective_calculator
8

9 def create_dem(
10 self,
11 dirichlet_enforcer: FluidEnforcer,
12 objective_calculator: FluidEnergy,
13):
14 nn_parameters = NNParameters(
15 layer_count=5,
16 neuron_count=66,
17 learning_rate=1.3330789490587558,
18 iteration_count=100,
19 weight_deviation=0.36941508201470885,
20 fourier_deviation=0.7239620095758805,
21 activation_function="sigmoid",
22 convergence_tolerance=5e-5,
23)
24

46

5.3. DEM_src

25 dimension = 2
26 return DeepEnergyMethod(
27 self.device,
28 self.verbose,
29 dimension,
30 nn_parameters,
31 dirichlet_enforcer,
32 objective_calculator,
33)

Where FluidEnforcer is a child of DirichletEnforcer, a class made to enforce the
Dirichlet boundary conditions, and FluidEnergy is a child of ObjectiveCalculator,
defined as

1 class FluidEnergy(ObjectiveCalculator):
2 def __init__(self, mesh: Mesh, viscocity: float, tau: float):
3 super().__init__(mesh, FluidPenalizer())
4 self.viscocity = viscocity
5 self.tau = tau
6

7 def calculate_all_norms(self, u: torch.Tensor, grad_u: torch.Tensor):
8 u_norm, grad_u_norm = self.calculate_some_norms(u, grad_u)
9 div_u = grad_u[0][0] + grad_u[1][1]

10

11 return [u_norm, grad_u_norm, div_u**2]
12

13 def calculate_some_norms(self, u: torch.Tensor, grad_u: torch.Tensor):
14 return [torch.sum(u**2, 0), torch.sum(grad_u**2, [0, 1])]
15

16 def calculate_energy(
17 self, u: torch.Tensor, shape: tuple[int, int], density: torch.Tensor
18):
19 u_norm, grad_norm, div_norm = self.evaluate(u, shape, self.calculate_all_norms)
20

21 potential = (
22 0.5 * (self.penalizer(density) * u_norm + self.viscocity * grad_norm)
23 + self.tau * div_norm
24)
25

26 return torch.sum(potential * self.detJ)
27

28 def calculate_objective_and_gradient(
29 self, u: torch.Tensor, shape: tuple[int, int], density: torch.Tensor
30):
31 u_norm, grad_norm = self.evaluate(u, shape, self.calculate_some_norms)
32 potential = self.penalizer(density) * u_norm + self.viscocity * grad_norm
33

34 objective = 0.5 * torch.sum(potential * self.detJ)
35 gradient = 0.5 * self.penalizer.derivative(density) * u_norm
36

37 return objective, gradient

The functions responsible for calculating the objective and gradient are defined as
follows

1 def calculate_objective_gradient(self):
2 return self.objective_gradient
3

4 def calculate_objective(self, rho: npt.NDArray[np.float64]):

47

Chapter 5. Implementation

5 objective, objective_gradient = self.dem.train_model(rho, self.mesh)
6

7 objective = objective.cpu().detach().numpy()
8 self.objective_gradient = objective_gradient.cpu().detach().numpy()
9

10 return float(objective)

As the train_model function returns both the objective and objective gradient,
calculate_objective_gradient does no computation, it just returns a stored value.

5.4 Testing

While developing our program, we made many tests to ensure that we did not
accidentally break one part while working on another. In this section, we will highlight
two of those tests; one testing the Helmholtz filter and one testing the objective
calculator.

For the Helmholtz filter, we first found an analytical solution to the PDE using the
method of manufactured solutions [35]. To do this we chose the domain Ω = [0, 1]2,
and found some function that satisfies the boundary conditions, namely ρ̃MMS(x, y) =
cos(2πx) cos(2πy). We then found the input ρ such that ρ̃MMS satisfied the PDE. Doing
this gives ρMMS = (8ϵ2π2 + 1) cos(2πx) cos(2πy). This tells us that filtering ρMMS

should give us ρ̃MMS , so ρ̃MMS is an analytical solution to the Helmholtz equation.
With this, we could make a test:

1 def test_HelmholtzFilter():
2 random_epsilon = np.e / np.pi
3 rho_expression = df.Expression(
4 "(8*eps*eps*pi*pi + 1)*cos(2*pi*x[0])*cos(2*pi*x[1])",
5 eps=random_epsilon,
6 degree=2,
7)
8 filtered_rho_expression = df.Expression("cos(2*pi*x[0])*cos(2*pi*x[1])", degree=2)
9

10 def error_func(N):
11 mesh, rho = initialize(N)
12

13 design_filter = HelmholtzFilter(random_epsilon, rho.function_space())
14 rho.interpolate(rho_expression)
15 filtered_rho = design_filter.apply(rho)
16

17 return df.errornorm(
18 filtered_rho, filtered_rho_expression, "L2", degree_rise=2, mesh=mesh
19)
20

21 Ns = list(range(10, 90 + 1, 10))
22 assert get_convergance(Ns, error_func) <= -2

This test ensured that the error from the filter implementation decreases proportional
to 1/N2. Figure 5.1 shows a log-log plot of the filter error as a function of N , together
with the convergence rate.

For the objective calculator, we implemented a simple child class to calculate∫
Ω ||u||2 + ||∇u||2 dx, and then tested it on Ω = [0, 5] × [0, 2] and u =

(cos(2y) sin(x), cos(y) sin(2x)), which has an analytical value that is complicated, so
we will not repeat it here. As in the previous test, we ensured that the error decreases

48

5.4. Testing

Figure 5.1: A figure depicting a log-log plot of the filter error as a function of N from the
HelmholtzFilter test. The convergence rate of the filter error is also depicted.

proportional to 1/N2. Figure 5.2 shows a log-log plot of the error as a function of N ,
together with the convergence rate.

1 class DummyObjective(ObjectiveCalculator):
2 def value(self, u, grad_u):
3 return [torch.sum(u**2, 0) + torch.sum(grad_u**2, [0, 1])]
4

5 def calculate_energy(
6 self, u: torch.Tensor, shape: tuple[int, int], density: torch.Tensor
7):
8 (value,) = self.evaluate(u, shape, self.value)
9

10 return torch.sum(value * self.detJ)
11

12 def calculate_objective_and_gradient(
13 self, u: torch.Tensor, shape: tuple[int, int], density: torch.Tensor
14):
15 pass
16

17

18 def trig(x_grid, y_grid):
19 ux = np.cos(2 * y_grid) * np.sin(x_grid)
20 uy = np.cos(y_grid) * np.sin(2 * x_grid)
21

22 return [ux, uy]
23

24

25 def trig_analytic(mesh: Mesh):
26 w, h = mesh.length, mesh.height
27

28 t1 = 24 * w * h - 4 * h * np.sin(2 * w) + h * np.sin(4 * w) + 4 * w * np.sin(2 * h)
29 t2 = (np.sin(2 * w) - w) * np.sin(4 * h) + np.sin(4 * w) * np.sin(2 * h)
30

31 return (t1 + t2) / 8
32

33

49

Chapter 5. Implementation

34 def test_evaluate():
35 def trig_errfunc(N: int):
36 mesh = Mesh(2 * N, 3 * N, 5, 2)
37 objective = DummyObjective(mesh, ElasticPenalizer())
38 u = torch.from_numpy(flatten(trig(mesh.x_grid, mesh.y_grid))).float()
39

40 numeric = float(
41 objective.calculate_energy(u, mesh.shape, torch.ones_like(u))
42)
43 analytic = trig_analytic(mesh)
44

45 return abs(analytic - numeric)
46

47 Ns = list(range(5, 100, 5))
48 assert get_convergance(Ns, trig_errfunc) < -2

Figure 5.2: A figure depicting a log-log plot of the error as a function of N from the
ObjectiveCalculator test. The convergence rate of the error is also depicted.

50

Chapter 6

Results and Comparisons

6.1 Hyperparameters

One hyperparameter both the FEM and the DEM share is the EMD step size. While
a fixed or decreasing step size is typically used, the paper describing the EMD, [25],
experimented with increasing step sizes. The cantilever example comes from [25], where
a step size of αk = 25(k + 1) worked well. For the other examples, we used a step size
of the form αk = α0(k + 1), and found α0 by trying values until one worked. If α0 is
too large, the iteration diverges. We therefore tried finding the largest step size where
the iteration still converges. This method of finding a step size is obviously not ideal, a
better method might have been to use some sort of line search algorithm, but the best
algorithm for finding the EMD step size is still an active area of research. We therefore
decided to stick with the method used in the EMD paper, as we know that worked for
the cantilever example. The step sizes we found are summarized in table 6.1. The only
case where we used a different method was the twin pipe example, where we could not
find a good step size. We therefore limited how big the step size could be by using
αk = α0 min {(k + 1), 10}.

State equation Example FEM α0 DEM α0

Linear elasticity
Cantilever 25.0 37500.0

Short cantilever 0.03 1.5
Bridge 0.001 0.2

Stokes flow
Diffuser 0.0011 0.0002

Pipe bend 0.0015 0.0001
Twin pipe 0.0015 0.0004

Table 6.1: A table showing the EMD step sizes we found for each example, both for the FEM
and the DEM. Step sizes were found by trying values until the iteration converged.

The DEM has many hyperparameters. For the linear elasticity examples, we just
used the same hyperparameters they did in [24]. For Stokes flow, we first guessed some
divergence penalty τ , and then ran hyperopt to find the optimal hyperparameters. The
hyperparameters for both linear elasticity and Stokes flow are shown in table 6.2.

After finding the hyperparameters, we tuned τ by comparing the fluid velocities
produced by the DEM on the diffuser example with N = 40 and ρ = 0.5 with those from
the FEM. Figure 6.1 shows how τ affects the fluid velocities. We found that a too small
τ value caused the magnitude of the fluid velocities to decrease as divergence was not

51

Chapter 6. Results and Comparisons

NL NN σ Max iters η σW σF

Linear elasticity 5 68 RReLU 100 1.736 0.06226 0.1193
Stokes flow 5 66 Sigmoid 100 1.333 0.3694 0.7240

Table 6.2: Table of the hyperparameters used with the DEM for both linear elasticity and Stokes
flow. NL is the number of layers, NN is the number of neurons in each layer, σ is the activation
function, η is the learning rate, σW is the standard deviation of the random initialized weights,
and σF is the standard deviation for the random Fourier features.

penalized enough, and a too large τ caused the fluid velocities to not spread out enough,
causing most of the fluid to go straight forwards. We found that τ = 500 has the best
balance between those two trends, but it is not perfect, having an error in magnitude of
about 20 % compared to the FEM solution.

6.2 Results

We ran all the examples for both methods with four discretization parameters; N = 40,
N = 80, N = 160, and N = 320, and we will show the final designs for two of them,
namely N = 40 and N = 160. We will showcase the smallest objective reached and the
corresponding design, which is often, but not always, the same as the final objective. For
the EMD convergence criterion, we used

∣∣∣∣∣∣ρk+1 − ρk
∣∣∣∣∣∣

L2
≤ min

{
25(k + 1) · 10−5, 10−2}.

Note that we always used 25(k + 1) instead of αk. We did this as we would otherwise
have to use a different ntol for each example.

The results for the three linear elasticity examples solved using the FEM are shown
in figure 6.2 for the case with a discretization parameter of N = 40, and figure 6.3 for
N = 160. Table 6.3 summarizes important values from the optimization, namely the
best objective, the iteration where the best objective was reached, the total number of
iterations, the time taken, and whether the iteration converged or not. For each of the
tree examples, the values for all four discretization parameters are shown.

Example N Objective Best iter Total iters Time Converged?

Cantilever

40 0.003711 37 37 2 m 55 s Yes
80 0.003868 39 39 13 m 18 s Yes
160 0.003957 41 41 31 m 9 s Yes
320 0.003992 42 42 2 h 29 m Yes

Short cantilever

40 2.910 149 149 3 m 56 s Yes
80 17.59 194 194 24 m 29 s Yes
160 21.14 232 232 48 m 56 s Yes
320 23.05 328 328 4 h 9 m Yes

Bridge

40 325.7 188 188 5 m 45 s Yes
80 310.9 236 236 1 h 19 m Yes
160 304.5 311 311 3 h 32 m Yes
320 301.1 526 526 25 h 1 m Yes

Table 6.3: A table showing minimum objective value, iteration where the minimum was reached,
total iterations, time taken, and if the iteration converged or not. These values are shown for
the three linear elasticity examples solved using the FEM. For each example, the results for four
discretization parameters are shown; N = 40, N = 80, N = 160 and N = 320.

52

6.3. Comparison Indices

(a) τ = 100 (b) τ = 10000

(c) τ = 500

Figure 6.1: Figure showing the fluid velocities for the diffuser with N = 40 and ρ = 0.5 for
different penalization parameters τ . Figure 6.1a shows τ = 100, figure 6.1b shows τ = 10000,
and figure 6.1c shows τ = 500. Fluid velocities are compared to those from the FEM, and both
the error in the direction of the velocities, calculated with 1

2 −
uF EM ·uDEM

2||uF EM || ||uDEM || , and error in the
magnitude of the velocities, calculated with

∣∣||uF EM || − ||uDEM ||
∣∣, are shown.

The results for the three Stokes flow examples solved using the FEM are shown
in figure 6.4 for the case with N = 40, and figure 6.5 for N = 160. Table 6.4 again
summarizes the most important values from the optimization for all four discretization
parameters.

The results for the three linear elasticity examples solved using the DEM are shown
in figure 6.6 for the case with N = 40, and figure 6.7 for N = 160. Table 6.5 summarizes
important values from the optimization.

The results for the three Stokes flow examples solved using the DEM are shown in
figure 6.8 for the case with N = 40, and figure 6.9 for N = 160. Table 6.6 summarizes
important values from the optimization.

6.3 Comparison Indices

Before comparing the two methods, we must first decide what we want to compare. There
are many aspects we could compare, with the most obvious one probably being how the

53

Chapter 6. Results and Comparisons

(a) Cantilever (b) Short cantilever

(c) Bridge

Figure 6.2: Figures showcasing the optimized topologies, using the FEM, for three linear elasticity
examples; the cantilever shown in 6.2a, the short cantilever shown in 6.2b, and the bridge shown
in 6.2c. In all three examples, the discretization parameter N = 40 is used. A density of 1,
indicating presence of material, is shown in black, and a density of 0, indicating absence of
material, is shown in white. Intermediate values are highlighted by coloring densities around 0.5
in red.

final design looks. The goal of topology optimization is to find the optimal design, so it
seems reasonable to assert that the design is the most important result. Unfortunately,
comparing figures is very imprecise. Even if two designs look the same, there might be
differences that are not easily observable, but nevertheless have a meaningful impact on
the objective. Despite this drawback, comparing the designs has some benefits. One of
which is that it works as a sanity check. If something has gone wrong in the optimization,
that should be obvious when looking at the finished design. Another benefit is that all
the papers we have gotten our examples from include the optimal design they got, so
we have a reference to compare our results to. The results from the papers which used
linear elasticity, [25] and [24], are shown in figure 6.10. The results from the paper which
used Stokes flow, [8], are shown in figure 6.11.

Another obvious comparison index is the objective value of the final design. This
is indeed a good index, but with a few caveats. An optimization problem might have
multiple solutions, meaning that the objective function has multiple local minima. If the
optimization converges to a suboptimal local minimum, that is not necessarily the fault
of the PDE solver. The other problem is that each method calculates its own objective,
so they are not necessarily comparable. This is also true for different mesh sizes within
a method. To make the objectives comparable, we made a simple program that can read
in a finished design, interpolate it with the FEM with N = 320, and then recalculate the
objective with the interpolated design. The results from this program are shown in table
6.7 for the FEM objectives and table 6.8 for the DEM objectives. With the objectives
from multiple N -values, we can tell if the design seems to be converging or not. If the
difference between consecutive objectives decreases as the mesh becomes finer, the design
is probably converging. By calculating the rate at which the difference decreases, we can
calculate an approximate convergence factor. We do not have any reference objectives
for the linear elasticity examples, but we do have them for the Stokes flow examples,
which we have complied in table 6.9. This table contains the objectives form the paper

54

6.3. Comparison Indices

(a) Cantilever (b) Short cantilever

(c) Bridge

Figure 6.3: Figures showcasing the optimized topologies, using the FEM, for three linear elasticity
examples; the cantilever shown in 6.3a, the short cantilever shown in 6.3b, and the bridge shown
in 6.3c. In all three examples, the discretization parameter N = 160 is used. A density of
1, indicating presence of material, is shown in black, and a density of 0, indicating absence of
material, is shown in white. Intermediate values are highlighted by coloring densities around 0.5
in red.

we got the examples from, [8], as well as the objectives for the twin pipe example from
a paper that computed the objective for multiple minima, [32]. From that paper we see
that the twin pipe has two solutions, one where the pipes are joined in the center, which
is the global minimum, and one where the pipes do not join, which is a non-optimal
local minimum.

The speed of a method might seem like a good comparison index, and it is important
for users of the program we developed, but it does not tell us much about the quality of
the underlying methods. This is because the implementation of a method plays a large
role in how fast it is, and we cannot guarantee that we have implemented the methods
equally well. However, as the speed does influence the usability of our program, we will
still compare how fast the methods are. From the time taken for several N -values, we
can calculate a rough scaling factor for each method. This scaling factor is not dependent
on the exact implementation, but it will still change based on which algorithms we have
used.

Another index that is related to speed but not implementation dependent is the
number of iterations before convergence. This is also a flawed index, as the number
of iterations depends on the step size used in the descent, and as we found step sizes
manually, we cannot guarantee that they are optimal. How the number of iterations
changes as the mesh becomes finer is a useful index however, as it can be used to test
mesh independence, which is a property we want the methods to have. For a method to
be mesh independent, the number of iterations before convergence must stay constant
as the mesh becomes finer.

55

Chapter 6. Results and Comparisons

(a) Diffuser (b) Pipe bend

(c) Twin pipe

Figure 6.4: Figures showcasing the optimized topologies, using the FEM, for three Stokes flow
examples; the diffuser shown in 6.4a, the pipe bend shown in 6.4b, and the twin pipe shown
in 6.4c. In all three examples, the discretization parameter N = 40 is used. A density of 1,
indicating presence of fluid, is shown in blue, and a density of 0, indicating absence of fluid, is
shown in red. Intermediate values are highlighted by coloring densities around 0.5 in white.

6.4 Comparison

6.4.1 Convergence

Before analyzing our results, we must first discuss the topic of convergence. We stopped
the EMD iteration early if one of the following conditions were encountered:

• If the current objective is twice as large as the smallest objective reached.

• If the smallest objective reached has not changed in the last 50 iterations.

• If we have done more than 1000 iterations.

All of these are counted as the iteration diverging. The third condition is only there
to prevent the program from potentially running forever, we used a maximum large
enough for the condition to never be encountered. The only time an iteration using
the FEM did not converge was the twin pipe example with N = 160. In this case, the
objective increased to a value greater than 1012 within one iteration, triggering condition
one. We do not know why this happened, but we also observed similar behavior with
the diffuser for certain step sizes. This does indicate that the FEM has some sort of

56

6.4. Comparison

(a) Diffuser (b) Pipe bend

(c) Twin pipe

Figure 6.5: Figures showcasing the optimized topologies, using the FEM, for three Stokes flow
examples; the diffuser shown in 6.5a, the pipe bend shown in 6.5b, and the twin pipe shown
in 6.5c. In all three examples, the discretization parameter N = 160 is used. A density of 1,
indicating presence of fluid, is shown in blue, and a density of 0, indicating absence of fluid, is
shown in red. Intermediate values are highlighted by coloring densities around 0.5 in white.

instability. For the DEM, condition one was encountered with the bridge example with
N = 80. In this case the objective did not explode in a single iteration, but instead
increased over multiple iterations. The cantilever example with N = 40 did not improve
the objective in 50 iterations, and therefore encountered condition two. The diffuser
struggled to converge, with the objective increasing for both N = 160 and N = 320.
Aside from that, all other iterations converged. By comparing the iteration with the
lowest objective and the total number of iterations of the DEM results in table 6.5
for linear elasticity and 6.6 for Stokes flow, we can notice a curious tendency. Even
when the iteration converged, the final objective is often not the smallest. Most of the
time, the difference is small, being just a few iterations, but there are some cases where
the difference is more than ten iterations. We do not know why the DEM sometimes
converges to a worse result.

6.4.2 Figures

By comparing the results for linear elasticity with the FEM, figure 6.2 for N = 40 and
figure 6.3 for N = 160, we can see that refining the mesh does not change the overall
shape of the designs, which is good. As expected, a finer mesh results in smoother
designs. It also results in smaller boundary regions where ρ /∈ {0, 1}. This makes sense,

57

Chapter 6. Results and Comparisons

Example N Objective Best iter Total iters Time Converged?

Diffuser

40 31.03 13 13 2 s 917 ms Yes
80 30.54 12 12 10 s 560 ms Yes
160 30.46 12 12 46 s 736 ms Yes
320 30.45 13 13 5 m 13 s Yes

Pipe bend

40 10.27 18 18 4 s 677 ms Yes
80 9.836 20 20 23 s 136 ms Yes
160 9.774 20 20 1 m 52 s Yes
320 9.767 20 20 8 m 40 s Yes

twin pipe
q = 0.01

40 15.82 47 47 17 s 465 ms Yes
80 15.67 50 50 1 m 26 s Yes
160 15.59 53 53 7 m 45 s Yes
320 15.70 49 49 38 m 43 s Yes

twin pipe
q = 0.1

40 25.80 23 23 8 s 241 ms Yes
80 24.01 422 422 12 m 35 s Yes
160 25.02 9 10 1 m 25 s No
320 23.93 389 389 5 h 9 m Yes

Table 6.4: A table showing minimum objective value, iteration where the minimum was reached,
total iterations, time taken, and if the iteration converged or not. These values are shown for
the three Stokes flow examples solved using the FEM. For each example, the results for four
discretization parameters are shown; N = 40, N = 80, N = 160 and N = 320.

we used linear elements, so changing the density from one to zero takes the full width of
one element. A finer mesh means smaller elements, and thus a smaller diffuse boundary.
The design for the bridge example has some problematic elements; for N = 40 there
seems to be disconnected segments, and for N = 160 there are thin segments which
could snap if built. This indicates that the filer radius is too small. As the results for
linear elasticity with the FEM have the same shape, we will only compare the N = 160
case to the reference designs in figure 6.10. Here we can see that the cantilever we got
seems to be identical to the reference cantilever. The bridge is also somewhat similar,
but the short cantilever is missing the diagonal line. We cannot tell which design is
superior from the figure alone.

Things are different with the DEM results. By comparing the results for linear
elasticity, figure 6.6 for N = 40 and figure 6.7 for N = 160, we see that the rough mesh
and fine mesh does not give the same shape. This is a problem as it means refining the
mesh will not give a more refined version of the rough design, so we cannot tell what
the design will look like in the limit as the mesh becomes infinitely fine. As mentioned
in section 4.3.3, increasing the mesh size just increases the number of points where the
DEM model is sampled, and should therefore just result in a smoother design. The fact
that this is not the case indicates that the DEM struggles with the increased training
complexity. Unlike with the FEM, a finer mesh does not seem to give smaller boundaries,
instead, it seems the opposite is true. It is clear from looking at the cantilever design
for both the rough and fine mesh that the final design is not optimal. The bridge with
N = 40 looks good, but for N = 160 there is a thin connection on the right side that
is entirely diffuse, so the result is not realizable. Compared to the reference designs
in figure 6.10, it is clear that neither the rough nor the fine cantilever resembles the
reference internally. For N = 160, the short cantilever is close to the reference figure,

58

6.4. Comparison

(a) Cantilever (b) Short cantilever

(c) Bridge

Figure 6.6: Figures showcasing the optimized topologies, using the DEM, for three linear elasticity
examples; the cantilever shown in 6.6a, the short cantilever shown in 6.6b, and the bridge shown
in 6.6c. In all three examples, the discretization parameter N = 40 is used. A density of 1,
indicating presence of material, is shown in black, and a density of 0, indicating absence of
material, is shown in white. Intermediate values are highlighted by coloring densities around 0.5
in red.

just flipped horizontally. For the bridge, the result with the fine mesh looks somewhat
similar, but the one with the rough mesh looks very different. It might seem weird
that our results for the short cantilever and bridge does not match the result from [24]
given how we implemented the method described in that paper, but the differences are
explainable. For the bridge, the cause is the discretization we chose combined with the
fact that He et al. limited the number of iterations to 80. With N = 30 and a limit
of 80 iterations the bridge design, shown in figure 6.12, looks almost identical to the
reference. For the short cantilever, the fact that the diagonal line is missing for N = 40
is also caused by the iteration count. By looking at the intermediate designs during the
optimization process, shown in figure 6.13, we can see that the short cantilever had a
diagonal line at iteration 53, but it gradually disappeared. For both the N = 40 and
the N = 160 design, the center line is flipped compared to the reference. This might
actually be a problem with the reference picture, if we instead look at the cantilever we
get when running the source code provided by He et al., shown in figure 6.14, we see
a result very similar to the result we got with N = 160. The reason the code gave a
different result when ran on our machine is probably caused by a difference in random
number generation or floating point implementation in the machine we ran the code on.

Comparing the designs from the FEM with the ones with the DEM for the linear
elasticity examples, we see that the only design that looks the same between the two
is the short cantilever with N = 40. As the DEM result has no diffuse boundary, it is
probably the superior result. Comparing the bridge with N = 40, it is safe to assume
that the DEM gave a better result as it does not have disconnected segments. For
N = 160, the two designs are similar, but as the DEM result has many diffuse parts,
the FEM probably gave a better result. For the cantilever, the FEM obviously gave a
better result for both N = 40 and N = 160.

When looking at the results from Stokes flow with the FEM, we see the same trends
as in the linear elasticity case. Comparing figure 6.4 for N = 40 and figure 6.5 for

59

Chapter 6. Results and Comparisons

(a) Cantilever (b) Short cantilever

(c) Bridge

Figure 6.7: Figures showcasing the optimized topologies, using the DEM, for three linear elasticity
examples; the cantilever shown in 6.7a, the short cantilever shown in 6.7b, and the bridge shown
in 6.7c. In all three examples, the discretization parameter N = 160 is used. A density of
1, indicating presence of material, is shown in black, and a density of 0, indicating absence of
material, is shown in white. Intermediate values are highlighted by coloring densities around 0.5
in red.

N = 160, we see that the designs have the same shape, and the finer mesh results in
smoother designs. Unlike linear elasticity however, the finer mesh does not seem to have
a smaller diffuse boundary. Compared to the reference designs in figure 6.11, we see
that all three designs we got look identical to the reference designs, except for a small
difference for the twin pipe, where the combined section is longer in the reference than
in our result. We cannot tell if our result is better or worse based on the figures alone.

The story is very different for the DEM. For N = 40, shown in figure 6.8, we see
that the results look mostly right. The diffuser is close to the reference, figure 6.11, but
the pipe bend is slightly off, and the twin pipe does not connect at the center. From
[32] we get that two separate pipes is a non-optimal minimum, so the twin pipe result
is not bad, but it means the inaccuracies in the DEM prevented the optimization from
reaching the global minimum. Unlike the linear elasticity case, the Stokes flow designs
have a diffuse boundary, but it does not seem to be any bigger than in the FEM case.
The fact that the designs are slightly off is not surprising; as we saw when tuning the
divergence penalty τ , our way of making the DEM solve the Stokes equations does not
give the correct solution, so the design based on those solutions is obviously a bit wrong.
Regarding the solutions for N = 160, figure 6.5, it is not necessary to study the designs
closely to notice that something has gone horribly wrong. This is a more extreme version
of what we saw with the linear elasticity examples, so it is clear that the DEM struggles
with a finer mesh.

6.4.3 Objectives

By looking at the table of computed and interpolated objective values for the FEM,
table 6.7, we see that, for the cantilever and short cantilever, the computed objectives
increase as the mesh is refined. This is probably due to the fact that those examples
have a small region where force is applied, which causes it to be underestimated when
the mesh is rough. The short cantilever with N = 40 is an outlier, it has an objective

60

6.4. Comparison

Example N Objective Best iter Total iters Time Converged?

Cantilever

40 0.003541 23 74 18 m 33 s No
80 0.003775 62 71 33 m 33 s Yes
160 0.003979 65 77 12 m 42 s Yes
320 0.00423 91 91 13 m 33 s Yes

Short cantilever

40 19.54 261 263 10 m 33 s Yes
80 19.75 200 211 11 m 25 s Yes
160 20.32 187 188 9 m 46 s Yes
320 20.78 212 213 12 m 34 s Yes

Bridge

40 295.2 365 369 28 m 33 s Yes
80 275.0 629 630 49 m 59 s Yes
160 312.7 137 137 12 m 19 s Yes
320 338.5 163 163 56 m 27 s Yes

Table 6.5: A table showing minimum objective value, iteration where the minimum was reached,
total iterations, time taken, and if the iteration converged or not. These values are shown for
the three linear elasticity examples solved using the DEM. For each example, the results for four
discretization parameters are shown; N = 40, N = 80, N = 160 and N = 320.

nearly one tenth of the versions with a finer mesh. The short cantilever does have a
very small region of applied force, so the FEM probably drastically underestimates it
when the mesh is rough. This hypothesis is supported by the Stokes flow examples, as
there the computed objective decreases as the mesh is refined. This is what we expect
to happen, the rough edges that results from a rough mesh are not optimal, you want
smooth lines for both linear elasticity and Stokes flow. The exception here is the twin
pipe, where the computed objective increases from N = 80 to N = 160, but this is
due to the fact that the N = 160 case did not converge properly. The interpolated
objectives decrease as the mesh is refined for all examples, which further supports our
hypothesis, as the interpolated results are computed with a constant mesh size. This
means the force is calculated equally for all cases, so the only difference between the
results is how jagged they are. For Stokes flow, the interpolated objectives are very close
to the computed objectives. Looking at all the interpolated objectives, they seem to be
converging to some value. If we compute the convergence rate of the absolute differences
between increasing N -values, we find that the bridge is converging the slowest with a
rate of about 1/N0.95±0.41, and the pipe bend converges fastest with a rate of about
1/N3.0±0.1. The twin pipe example did not converge for N = 160, so we cannot really
calculate a reliable convergence ratio in that case, but if we did so anyway it would be a
barely statistically significant 1/N0.36±0.28. The average convergence rate is 1/N1.8±0.3.

The DEM objectives shown in table 6.8 do not follow the same nice pattern as
the FEM objectives. Like the FEM, the computed objectives for the linear elasticity
examples increase as the mesh becomes finer, but so does the objectives for the Stokes
flow examples. While the interpolated objective for N = 80 is always better than the one
for N = 40, both N = 160 and N = 320 give significantly worse results, which makes
sense given how the final designs looked for N = 160. This indicates that N = 80 is the
best balance between training complexity and smoothness. Unlike the FEM, the short
cantilever with N = 40 does not have a significantly lower computed objective, which
might be because we created an integration method specifically to handle the traction
integral. As the interpolated objectives are computed using the FEM, comparing the
computed and interpolated objectives is a way of comparing the two methods. From this

61

Chapter 6. Results and Comparisons

(a) Diffuser (b) Pipe bend

(c) Twin pipe

Figure 6.8: Figures showcasing the optimized topologies, using the DEM, for three Stokes flow
examples; the diffuser shown in 6.8a, the pipe bend shown in 6.8b, and the twin pipe shown
in 6.8c. In all three examples, the discretization parameter N = 40 is used. A density of 1,
indicating presence of fluid, is shown in blue, and a density of 0, indicating absence of fluid, is
shown in red. Intermediate values are highlighted by coloring densities around 0.5 in white.

we can see that the objective value for the pipe bend example is very close to the one
the FEM gives for both N = 40 and N = 80. If the DEM can accurately calculate the
objective value it must accurately calculate the fluid velocities, but then the resulting
design should be the same as with the FEM, which is not the case. We can see something
similar for the diffuser, but there the difference is a bit bigger. We do not know why
the designs are so different when the objectives are so similar. Looking at just the
interpolated objectives, it does not seem like the objective of any example is converging.
If we actually compute the convergence rate of the differences, we get that the cantilever
is barely converging at a rate of 1/N0.68±0.37, but all the other examples are diverging,
with the diffuser diverging at a rate of N3.9±0.1.

Comparing the interpolated objectives for the FEM with those of the DEM, we find
that there are four cases where the DEM gives better results than the FEM. Those are
the short cantilever and bridge with N = 40 and N = 80. This makes sense, the diffuse
region the FEM has when the mesh is rough is penalized, so when the two methods
converge to the same shape, we would expect the sharp boundaries to give the DEM
an advantage. The DEM short cantilever is better, but not by much. For N = 40, the
difference is just 1.2 %, and for N = 80, the difference is an insignificant 0.08 %. The
fact that the difference is only caused by the diffuse boundary is why the FEM result

62

6.4. Comparison

(a) Diffuser (b) Pipe bend

(c) Twin pipe

Figure 6.9: Figures showcasing the optimized topologies, using the DEM, for three Stokes flow
examples; the diffuser shown in 6.9a, the pipe bend shown in 6.9b, and the twin pipe shown
in 6.9c. In all three examples, the discretization parameter N = 160 is used. A density of 1,
indicating presence of fluid, is shown in blue, and a density of 0, indicating absence of fluid, is
shown in red. Intermediate values are highlighted by coloring densities around 0.5 in white.

with N = 320 is better than all the DEM short cantilever results. For the bridge with
N = 40, the DEM is 1.65 % better than the DEM, and for N = 80, the DEM is 8.45
% better. This indicates that the DEM found a better solution than the DEM, either
a better local minimum, or even the global minimum. This is further reinforced by the
fact that the FEM result for N = 320 is still worse than the DEM result with both
N = 40 and N = 80. The fact that DEM short cantilever with N = 160 is worse than
the design the FEM got indicates that the diagonal line is suboptimal local minimum.
For the other examples, the best DEM diffuser is with N = 80, and it is 8.9 % worse than
the corresponding FEM diffuser. For the pipe bend, the closest result is with N = 80,
where the error is 16.6 %, the closest twin pipe is with N = 40 and has an error of 34.7
%, and the closest cantilever is with N = 160 and has with an error of 34.9 %.

From the reference objectives in table 6.9, we see that the FEM results with N = 320
gave almost the same objectives as the reference. The diffuser gave a slightly worse result
with an error of 0.03 %, but the pipe bend is 0.07 % better, and the twin pipe is 13 %
better than the one from [8]. This indicates that a shorter combined section is better than
a long one. If we instead compare with the value for the optimal solution found in [32], we
see that our objective is 0.3 % higher than the one they got. The fact that our objectives
so closely match the reference objectives indicates that our FEM implementation works

63

Chapter 6. Results and Comparisons

Example N Objective Best iter Total iters Time Converged?

Diffuser

40 35.37 11 11 5 m 8 s Yes
80 34.38 13 13 9 m 43 s Yes
160 61.57 8 14 13 m 30 s No
320 274.6 5 9 11 m 54 s No

Pipe bend

40 14.91 21 21 10 m 19 s Yes
80 11.41 23 23 19 m 53 s Yes
160 27.48 15 15 11 m 17 s Yes
320 40.00 18 18 15 m 37 s Yes

twin pipe
q = 0.01

40 18.85 19 20 6 m 9 s Yes
80 18.86 12 12 6 m 6 s Yes
160 19.74 13 13 15 m 42 s Yes
320 21.37 12 12 7 m 59 s Yes

twin pipe
q = 0.1

40 28.73 11 11 1 m 46 s Yes
80 27.49 17 29 9 m 33 s Yes
160 41.70 10 10 1 m 37 s Yes
320 51.58 8 8 1 m 0 s Yes

Table 6.6: A table showing minimum objective value, iteration where the minimum was reached,
total iterations, time taken, and if the iteration converged or not. These values are shown for
the three Stokes flow examples solved using the DEM. For each example, the results for four
discretization parameters are shown; N = 40, N = 80, N = 160 and N = 320.

as it should, and that the EMD algorithm works well for solving fluid based topology
optimization problems. For the DEM, using the interpolated objectives for the mesh
size that gave the best results, N = 80, we get that the objective for the diffuser is 9.2%
higher, for the pipe bend is 17% higher, and for the twin pipes is 21% higher than in [8].
This matches our observations of the designs; the diffuser looked quite close while the
pipe bend and twin pipe looked quite different. Comparing the value for the twin pipe
example with the one in [8] is not fair as we are comparing a suboptimal local minimum
with the global minimum. If we instead compare the objective to the suboptimal local
minimum in [32], we get an error of just 3%.

6.4.4 Speed

By looking at table 6.3 of the results for the FEM and linear elasticity, we can see
that our program is quite fast for rough meshes, with the cantilever being the fastest
at around three minutes for N = 40, and the bridge being the slowest at about six
minutes for N = 40. The bridge being the slowest makes sense as it has a width that is
significantly larger than its height. As we have seen from the interpolated objectives, the
design the FEM gives is quite good even with a rough mesh, with the cantilever giving
a result that is just 1.6 % larger, so a rough mesh is a good way of getting approximate
results quickly. The speed depends on the size of the domain, which makes sense as
doubling the length will also double the number of elements in the mesh. This means
that the program is very slow with N = 320, with the cantilever example taking almost
two and a half hours, and the bridge taking a bit more than a full day. It seems like
the time the program takes increases proportional to about N2, which is what we would
expect. As the number of iterations taken also seem to increase with N , the exponent
is a bit more than 2, being 2.5± 0.1 for the bridge and 3.0± 0.5 for the short cantilever.

64

6.4. Comparison

(a) Cantilever (b) Short cantilever

(c) Bridge

Figure 6.10: Figures showcasing the optimized topologies for three linear elasticity examples; the
cantilever shown in 6.10a, the short cantilever shown in 6.10b, and the bridge shown in 6.10c.
The cantilever comes from figure 6.4 from [25], where the FEM was used, and we have added a
gray border to show Ω. The short cantilever and bridge comes from figure 2 and 3 in [24], where
the DEM was used. The cantilever used the discretization parameter h = 1/128, corresponding
to N = 128. The short cantilever used a 91-by-46 grid, corresponding to N = 45. The bridge
used an 121-by-31 grid, which results in a rectangular grid, and therefore no singular N value.
Instead, it has Nx = 30 and Ny = 20 in the x-direction and y-direction respectively. A density
of 1, indicating presence of material, is shown in black, and a density of 0, indicating absence of
material, is shown in white. Intermediate values are not highlighted, they are instead shown as
shades of gray.

Interestingly enough, the exponent for the cantilever is less than 2, being 1.8±0.1. This
is probably a result of the fact that the time a program takes to run is affected by several
external factors, so the uncertainty of the exponent is high. The table for Stokes flow,
6.4, tells us the same story, but the times are all much smaller. This is a combination
of three factors. The first one is the domain size; both the diffuser and pipe bend are
square, while the twin pipe has a width of 1.5. The second one is the iteration count;
the diffuser used around 12 iterations and the pipe bend used around 20. The exception
here is the twin pipe, which used many iterations for the refinement step. The third
cause is the fact that you only need to solve one PDE per iteration, unlike with linear
elasticity where you need to filter both the design and the gradient, resulting in two
additional PDE solves. These effects combined means that the diffuser and pipe bend
use around four seconds for N = 40. Even the N = 320 case is quite fast, with the
diffuser taking around five minutes, and the pipe bend using about nine minutes. The
twin pipe is still quite fast for N = 40, but for N = 80 and N = 320 it is slower than
the cantilever. As the number of iterations is roughly constant for both the diffuser and
pipe bend, the time they take increases at roughly the same rate, being proportional to
N2.0±0.2 for the pipe bend and N1.9±0.2 for the diffuser. Here the exponent is again less
than two, but this time it is not statistically significant. Given how much faster a rough
mesh is, an idea for a faster implementation for fine meshes is to first quickly find the
optimal rough design, and then use that as the initial design for a new run with a finer
mesh.

Once again, the DEM results are very different. By looking at table 6.5 and 6.6, for
the results for linear elasticity and Stokes flow respectively, we find that a finer mesh

65

Chapter 6. Results and Comparisons

(a) Diffuser (b) Pipe bend

(c) Twin pipe

Figure 6.11: Figures showcasing the optimized topologies for three Stokes flow examples; the
diffuser shown in 6.11a, the pipe bend shown in 6.11b, and the twin pipe shown in 6.11c. All
three figures are from [8], where the FEM was used. The diffuser comes from figure 5, the pipe
bend from figure 7 and the twin pipe from figure 11. In all three examples, the discretization
parameter N = 100 was used. A density of 1, indicating presence of fluid, is shown in white,
and a density of 0, indicating absence of fluid, is shown in black. Intermediate values are not
highlighted, they are instead shown as shades of gray.

does not result in a meaningfully slower time. The average exponent is 0.60±0.28, so the
time taken does in fact increase with N , but the exponent is small and the uncertainty
is large. However, while the time taken might be almost constant, it is still quite slow.
The DEM is the most competitive for linear elasticity, where it becomes faster than the
bridge and short cantilever at N = 80, and faster than the cantilever at N = 160. For
Stokes flow however, the FEM is still faster than the DEM with N = 320 for both the
diffuser and pipe bend, and the DEM is only faster for the twin pipe with N = 320.
This might indicate that, if you want to run a simulation with for instance N = 1280,
the DEM is the clear choice. However, as we have seen previously, the DEM struggles
with a fine mesh, so such a fine mesh might give unusable results.

6.4.5 Mesh Independence

Most of our results are not mesh independent. For linear elasticity, the FEM with the
cantilever is the closest, where the number if iterations increases by just one or two as
the mesh is refined. It is therefore weakly mesh dependent. For the other two examples,
the number of iterations increases quickly. For Stokes flow, the FEM with the diffuser

66

6.5. General Discussion

State equation Example N Computed ϕ Interpolated ϕ

Linear elasticity

Cantilever

40 0.003711 0.004054
80 0.003868 0.004008
160 0.003957 0.003996
320 0.003992 0.003992

Short cantilever

40 2.910 23.83
80 17.59 23.21
160 21.14 23.09
320 23.05 23.05

Bridge

40 325.7 305.7
80 310.9 302.8
160 304.5 301.9
320 301.1 301.1

Stokes flow

Diffuser

40 31.03 31.04
80 30.54 30.55
160 30.46 30.46
320 30.45 30.45

Pipe bend

40 10.27 10.26
80 9.836 9.833
160 9.774 9.774
320 9.767 9.767

Twin pipe

40 25.80 25.82
80 24.01 24.02
160 25.02 25.02
320 23.93 23.93

Table 6.7: A table showing the best objective reached by the FEM for every example, labeled
"Computed ϕ", and the objective calculated by interpolating the design and recalculating the
objective using the FEM with N = 320, labeled "Interpolated ϕ".

and pipe bend seems to be almost completely mesh independent. Mesh dependence is
a statement on asymptotic behavior, so, assuming that the number of iterations for the
pipe bend will stay constant with further mesh refinements, it is fully mesh independent.
For the DEM, the number of iterations jumps around for both linear elasticity and Stokes
flow, so it is not mesh independent.

6.5 General Discussion

From our results, it seems clear that the FEM performed better than the DEM, but
how much better depends on if you are using linear elasticity or Stokes flow. With
linear elasticity, the DEM did outperform the FEM on two of the three examples when
the mesh was rough, and was significantly faster than the FEM when the mesh was
fine. We did however see that the DEM struggles with fine meshes, so it being faster
is meaningless when the results it produces are significantly worse. The results for the
rough mesh being better is rendered moot by the time the DEM takes to get those
results; you would mostly use a rough mesh when testing or prototyping, which are both
cases where the speed of the method is very important. This means you would rather
have a fast algorithm that gives slightly worse results instead of a slow algorithm that

67

Chapter 6. Results and Comparisons

State equation Example N Computed ϕ Interpolated ϕ

Linear elasticity

Cantilever

40 0.003541 0.00973
80 0.003775 0.007536
160 0.003979 0.005392
320 0.00423 0.006253

Short cantilever

40 19.54 23.54
80 19.75 23.19
160 20.32 23.72
320 20.78 24.29

Bridge

40 295.2 300.7
80 275.0 277.2
160 312.7 316.7
320 338.5 345.0

Stokes flow

Diffuser

40 35.37 34.12
80 34.38 33.26
160 61.57 47.93
320 274.6 227.4

Pipe bend

40 14.91 14.75
80 11.41 11.46
160 27.48 68.28
320 40.00 77.51

Twin pipe

40 28.73 34.78
80 27.49 33.56
160 41.70 111.8
320 51.58 178.9

Table 6.8: A table showing the best objective reached by the DEM for every example, labeled
"Computed ϕ", and the objective calculated by interpolating the design and recalculating the
objective using the FEM with N = 320, labeled "Interpolated ϕ".

gives slightly better results, so in that case the FEM is still better. The exception to this
is the bridge example, where the design the DEM got for a rough mesh was better than
the one the FEM got with a fine mesh. However, this was caused by the FEM converging
to a different design than the DEM, which, as mentioned previously, is not the fault of
the FEM. If we had used a more advanced minimization algorithm that can find multiple
minima, like the one described in [32], both methods might give both designs. In that
case, the increased smoothness of the FEM design would make it superior to the DEM
one. The fact that the DEM gave such bad results for the cantilever example is probably
a problem with the hyperparameters; the hyperparameters we used were optimized for
the two examples in [24], which use a larger domain, larger force and larger Young’s
modulus than the cantilever example, so the optimal hyperparameters for those two
might not be optimal for the cantilever. If this is the case, it would be a large downside
of the DEM. If the optimal hyperparameters are dependent on the specific problem you
want to solve, the hyperparameter optimization should really be included in the time
taken by the method, making it even slower than it already is.

For the results with Stokes flow, the DEM has no benefits compared to the FEM.
The only case where it gave an acceptable result was the twin pipe with a rough mesh,
in all other cases the results it converged to are far from the true minima. The bad

68

6.5. General Discussion

Example Objective
Diffuser 30.46

Pipe bend 9.76
Twin pipe from [8] 27.64

Twin pipe from [32], combined 23.87
Twin pipe from [32], separate 32.58

Table 6.9: A table showing objective values from reference solutions for various examples. The
objective for the diffuser and pipe bend come from table I and II in [8] respectively. Three
separate objectives for the twin pipe example is shown. The first comes from table IV in [8],
while the other two comes from the description of figure 6 in [32]. "Combined" means the pipes
join in the center, which is the global minimum, and "separate" means that the pipes do not join,
which is a local minimum.

Figure 6.12: A figure of the optimized design of the bridge example using the DEM limited to 80
iterations and with N = 30.

performance of the DEM is most likely a result of the cost function we chose, but we
do not know of a better way of defining it. We initially tried to use the full energy
functional (3.12), but we noticed that the cost kept decreasing without ever converging.
We hypothesized that this was due to the DEM struggling to enforce a relationship
between the pressure and the fluid velocities, so if we used a pressure free approach, the
results would improve, and this is indeed what we saw. The problem with the pressure
free approach is that the divergence is never truly zero, as making the penalization
parameter too big causes the DEM to ignore the first part of the energy functional.
The ideal solution would be to use an approach similar to the additive decomposition
used to enforce Dirichlet boundary conditions. If we could find a function ξ(u) such
that ∇ · ξ(u) = 0 and ξ(u) = u on δΩ, we could just use uNN = ξ(m ⊙ ũNN + g)
and safely use the pressure-free functional. Unfortunately, we do not know of such a
function. However, even if such a function could be found, we are confident the FEM
would still outperform the DEM. The FEM solved the Stokes flow examples incredibly
quickly, so even if the DEM could get comparable objective values, it would probably
still be significantly slower.

The fact that the DEM has an almost constant time complexity is interesting, and
it means the DEM could be a useful method if its other flaws could be fixed. The way
you typically improve neural network models is by tweaking the architecture, changing
the amount of layers, the type of layers and how the layers are connected to each other.
The architecture we used was very simple, so it would not be surprising if a different
architecture could give better results. However, a more complicated architecture would
increase the computational complexity of the model, making it even slower than it
already is. The fact that we cannot know which architecture is the best is a flaw of
neural networks in general; there is no rigor in how architectures are chosen, your only
option is to try many architectures and choose the one that performs the best. The FEM
on the other hand is a well studied method with much mathematical rigor. We know

69

Chapter 6. Results and Comparisons

Figure 6.13: A figure showcasing the intermediate designs when optimizing the short cantilever
with the DEM and N = 40.

Figure 6.14: A figure of the optimized design for the short cantilever that you get when running
the source code provided by [24].

for instance that the diffuse boundary the FEM gave for the linear elasticity examples is
due to the fact that we used piecewise linear polynomials, and that a different function
space, such as discontinuous piecewise constants, would give sharper boundaries. Due
to the mathematical rigor we know the benefits and drawbacks of the various function
spaces, and can choose the one that works best for the problem we want to solve. For
the DEM, you can never know if the architecture you have found is optimal. This is true
for the hyperparameters in general. The lack of a guaranteed minimum is also a problem
when training a neural network. The FEM turns the PDE into a linear equation, which
is guaranteed to have a unique solution as long as the matrix A is not singular. The
DEM on the other hand uses a gradient based minimization method to optimize the
parameters, which is a very non-convex optimization problem. This means that the
solution the DEM gives is very sensitive to random variations, and there is no guarantee
that the training converges to the global minimum. This is also a problem when looking
at the limiting case. The finite element subspace Sh is defined such that as h → 0, the
FEM solution converges to the true solution. We have no such guarantees with a neural
network. One would assume that the solution the DEM gives converges to the true
solution as the number of layers and amount of training data increases, but we cannot
guarantee that it will.

A way of improving our DEM implementation would be to use both training and
testing data, and training the network in a way that ensures good results on the testing
data. If this is done, we could evaluate the neural network on any point in the domain,
giving a high resolution design even with few training points. This would potentially be a
big improvement, the higher resolution would make designs with a rough mesh smoother,
making them comparable to the FEM results with a fine mesh. However, as we have seen,

70

6.5. General Discussion

the DEM struggles with a large amount of training data, so this approach might make
the DEM struggle to train properly. A way of improving our FEM implementation
would be to use the iterative refinement approach mentioned in section 6.4.4, which
should make the FEM significantly faster for fine meshes, alleviating the main drawback
of the method.

71

Chapter 6. Results and Comparisons

72

Chapter 7

Conclusion

In this thesis, we have developed a program that can solve topology optimization
problems based on both the equations of linear elasticity and the Stokes equations.
The program can use both the finite element method and the deep energy method to
solve the underlying state equations. Using this program, we compared the performance
of the two methods on a total of six examples; three for linear elasticity, and three
for Stokes flow. As a product of this thesis, we have developed two novel methods for
solving Stokes based topology optimization problems; one using entropic mirror descent
combined with the FEM, and one using EMD combined with the DEM.

We have found that our FEM implementation is superior to our DEM implementa-
tion. The main benefit of the FEM is that it gives the same shape on both rough and
fine meshes, which means refining the mesh improves the design, making it smoother and
reducing the size of the diffuse boundary. For the DEM on the other hand, increasing the
mesh size, that is, increasing the number of points where the model is sampled, results
in a worse result. This means that, although the DEM does give nice sharp boundaries
for a rough mesh, it cannot produce smooth versions of the same designs. The main
benefit of the DEM is that its time complexity is almost constant, unlike the FEM,
where the time taken increases proportionally to about N2.2, which makes it slow for
very fine meshes. The fact that the results from the DEM get worse as the mesh becomes
finer does however mean this benefit is mostly meaningless. The FEM is significantly
faster than the DEM for a rough mesh, meaning that even though the DEM sometimes
gives slightly better results in that case, the FEM is more useful for prototyping and
testing. Our novel Stokes based topology optimization solver using the FEM proved to
be very fast, and gave results comparable to those from the existing literature. It does
however have some sort of instability which caused the twin pipe example to diverge
with N = 160, which needs to be fixed for the method to be truly useful. We have
found that the instability can be avoided by changing the step size a bit, so there does
exist a workaround which can be used. Our novel solver using the DEM did not give
satisfactory results. For a rough mesh it gave results that were close but not quite right,
and for a fine mesh it gave terrible results with both the pipe bend and twin pipes being
entirely disconnected in the middle.

There were two cases where the methods gave designs from different minima. This
makes comparing the two methods for those cases difficult. It would therefore be
interesting to repeat this comparison using a more advanced minimizer that can converge
to multiple minima, such as the one described in [32]. It would also be interesting to
extend the algorithm to use a line search to find the optimal step size at each iteration,
or even use the Hessian of the objective functionals combined with a trust region method

73

Chapter 7. Conclusion

[14].
We have compared the two methods on simple two-dimensional examples. For future

work, more complicated applications could be examined, such as three-dimensional
topology optimization, the full Navier-Stokes equations, or optimizing a topology that
includes multiple materials using multi-material topology optimization [48].

The fact that our DEM implementation has an almost constant time complexity is
not a novel result. The DEM is known to be useful for high-dimensional problems such
as high-dimensional optimal control problems, for instance multiagent path finding [31]
or stochastic optimal control [29]. This does mean that the DEM is the obvious choice
for topology optimization with thousands of dimensions, but creating real world shapes
only requires three-dimensional topology optimization, so we doubt the DEM is ever
going to outperform the FEM for structural design.

74

Bibliography

[1] David J. Acheson. “The Navier-Stokes equations.” In: Elementary Fluid Dynamics.
Clarendon Press, 1990, pp. 201–216. url: https://global.oup.com/academic/product/
elementary-fluid-dynamics-9780198596790.

[2] Grégoire Allaire, François Jouve, and Anca-Maria Toader. “A level-set method
for shape optimization.” In: Comptes Rendus Mathematique 334 (2002), pp. 1125–
1130. url: https://www.sciencedirect.com/science/article/pii/S1631073X02024123.

[3] Patrick Amestoy et al. “Multifrontal Method.” In: Encyclopedia of Parallel
Computing. Ed. by David Padua. Boston, MA: Springer US, 2011, pp. 1209–1216.
url: https://doi.org/10.1007/978-0-387-09766-4_86.

[4] Martin P. Bendsøe. “Optimal shape design as a material distribution problem.”
In: Structural optimization 1 (1989), pp. 193–202. url: https://doi.org/10.1007/
BF01650949.

[5] Martin P. Bendsøe and Noboru Kikuchi. “Generating optimal topologies in
structural design using a homogenization method.” In: Computer Methods in
Applied Mechanics and Engineering 71 (1988), pp. 197–224. url: https : / /www.
sciencedirect.com/science/article/pii/0045782588900862.

[6] Martin P. Bendsøe and Ole Sigmund. “Material interpolation schemes in topology
optimization.” In: Archive of Applied Mechanics 69 (1999), pp. 635–654. url: https:
//doi.org/10.1007/s004190050248.

[7] James Bergstra, Daniel Yamins, and David D. Cox. “Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures.” In: ICML (2013). url: http://proceedings.mlr.press/v28/bergstra13.
pdf.

[8] Thomas Borrvall and Joakim Petersson. “Topology optimization of fluids in Stokes
flow.” In: International Journal for Numerical Methods in Fluids 41 (2003), pp. 77–
107. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.426.

[9] Blaise Bourdin and Antonin Chambolle. “Design-dependent loads in topology
optimization.” In: ESAIM: Control, Optimisation and Calculus of Variations 9
(2003), pp. 19–48. url: http://www.numdam.org/articles/10.1051/cocv:2002070/.

[10] Richard P. Brent. “An algorithm with guaranteed convergence for finding a zero
of a function.” In: The Computer Journal 14 (1971), pp. 422–425. url: https :
//doi.org/10.1093/comjnl/14.4.422.

[11] Shengze Cai et al. Physics-informed neural networks (PINNs) for fluid mechanics:
A review. 2021. arXiv: 2105.09506 [physics.flu-dyn].

75

https://global.oup.com/academic/product/elementary-fluid-dynamics-9780198596790
https://global.oup.com/academic/product/elementary-fluid-dynamics-9780198596790
https://www.sciencedirect.com/science/article/pii/S1631073X02024123
https://doi.org/10.1007/978-0-387-09766-4_86
https://doi.org/10.1007/BF01650949
https://doi.org/10.1007/BF01650949
https://www.sciencedirect.com/science/article/pii/0045782588900862
https://www.sciencedirect.com/science/article/pii/0045782588900862
https://doi.org/10.1007/s004190050248
https://doi.org/10.1007/s004190050248
http://proceedings.mlr.press/v28/bergstra13.pdf
http://proceedings.mlr.press/v28/bergstra13.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.426
http://www.numdam.org/articles/10.1051/cocv:2002070/
https://doi.org/10.1093/comjnl/14.4.422
https://doi.org/10.1093/comjnl/14.4.422
https://arxiv.org/abs/2105.09506

Bibliography

[12] Long Chen. “A simple construction of a Fortin operator for the two dimensional
Taylor-Hood element.” In: Computers & Mathematics with Applications 68 (2014),
pp. 1368–1373. url: https : / / www . sciencedirect . com / science / article / pii /
S0898122114004519.

[13] Philippe G. Ciarlet. “Existence Theory Based on the Implicit Function Theorem.”
In: Mathematical Elasticity: Three-Dimensional Elasticity. Elsevier, 1988, pp. 269–
344. url: https://sciencedirect.com/science/book/9780444702593.

[14] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust Region
Methods. MOS-SIAM Series on Optimization. Society for Industrial and Applied
Mathematics (SIAM), 2000. url: https : / /epubs.siam.org /doi /book /10 .1137 /1 .
9780898719857.

[15] George Cybenko. “Approximation by superpositions of a sigmoidal function.” In:
Mathematics of Control, Signals and Systems 2 (1989), pp. 303–314. url: https:
//doi.org/10.1007/BF02551274.

[16] Iain S. Duff and John K. Reid. “The Multifrontal Solution of Indefinite Sparse
Symmetric Linear.” In: ACM Transactions on Mathematical Software 9 (1983),
pp. 302–325. url: https://doi.org/10.1145/356044.356047.

[17] Lawrence C. Evans. “Sobolev Spaces.” In: Partial Differential Equations. Vol. 19.
American Mathematical Society, 1998, pp. 251–308.

[18] Lawrence C. Evans. “The Calculus of Variations.” In: Partial Differential
Equations. Vol. 19. American Mathematical Society, 1998, pp. 456–519.

[19] Roger Fletcher. “Newton-Like Methods.” In: Practical Methods of Optimization.
John Wiley & Sons, Ltd, 2000, pp. 44–79. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/9781118723203.ch3.

[20] John T. Foster. Direct Methods for Solving Linear Systems of Equations. https:
//johnfoster.pge.utexas.edu/numerical-methods-book/LinearAlgebra_DirectSolvers.
html. Accessed: 2024-03-07.

[21] The Linux Foundation. PyTorch. https://pytorch.org/. Accessed: 2023-12-23.
[22] Allan Gersborg-Hansen, Ole Sigmund, and Robert B. Haber. “Topology

optimization of channel flow problems.” In: Structural and Multidisciplinary
Optimization 30 (2005), pp. 181–192. url: https://doi.org/10.1007/s00158-004-
0508-7.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Machine Learning Basics.”
In: Deep Learning. MIT Press, 2016, pp. 96–161. url: http://www.deeplearningbook.
org.

[24] Junyan He et al. “Deep energy method in topology optimization applications.” In:
Acta Mechanica 234 (2022), pp. 1365–1379. url: http://dx.doi.org/10.1007/s00707-
022-03449-3.

[25] Brendan Keith and Thomas M. Surowiec. Proximal Galerkin: A structure-
preserving finite element method for pointwise bound constraints. 2023. arXiv:
2307.12444 [math.NA].

[26] Ehsan Kharazmi, Zhongqiang Zhang, and George E. Karniadakis. “Variational
Physics-Informed Neural Networks For Solving Partial Differential Equations.” In:
CoRR abs/1912.00873 (2019). url: http://arxiv.org/abs/1912.00873.

76

https://www.sciencedirect.com/science/article/pii/S0898122114004519
https://www.sciencedirect.com/science/article/pii/S0898122114004519
https://sciencedirect.com/science/book/9780444702593
https://epubs.siam.org/doi/book/10.1137/1.9780898719857
https://epubs.siam.org/doi/book/10.1137/1.9780898719857
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1145/356044.356047
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118723203.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118723203.ch3
https://johnfoster.pge.utexas.edu/numerical-methods-book/LinearAlgebra_DirectSolvers.html
https://johnfoster.pge.utexas.edu/numerical-methods-book/LinearAlgebra_DirectSolvers.html
https://johnfoster.pge.utexas.edu/numerical-methods-book/LinearAlgebra_DirectSolvers.html
https://pytorch.org/
https://doi.org/10.1007/s00158-004-0508-7
https://doi.org/10.1007/s00158-004-0508-7
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1007/s00707-022-03449-3
http://dx.doi.org/10.1007/s00707-022-03449-3
https://arxiv.org/abs/2307.12444
http://arxiv.org/abs/1912.00873

Bibliography

[27] Mats G. Larson and Fredrik Bengzon. “Piecewise Polynomial Approximation in
2D.” In: The Finite Element Method: Theory, Implementation, and Applications.
Springer-Verlag, 2014, pp. 45–69. url: https://doi.org/10.1007/978-3-642-33287-6.

[28] Boyan S. Lazarov and Ole Sigmund. “Filters in topology optimization based on
Helmholtz-type differential equations.” In: International Journal for Numerical
Methods in Engineering 86 (2011), pp. 765–781. url: https: / /onlinelibrary.wiley.
com/doi/abs/10.1002/nme.3072.

[29] Xingjian Li, Deepanshu Verma, and Lars Ruthotto. A Neural Network Approach
for Stochastic Optimal Control. 2023. arXiv: 2209.13104 [math.OC].

[30] Jikai Liu et al. “Current and future trends in topology optimization for additive
manufacturing.” In: Structural and Multidisciplinary Optimization 57 (2018),
pp. 2457–2483. url: https://doi.org/10.1007/s00158-018-1994-3.

[31] Derek Onken et al. “A Neural Network Approach for High-Dimensional Optimal
Control Applied to Multiagent Path Finding.” In: IEEE Transactions on Control
Systems Technology 31 (2023), pp. 235–251. url: http://dx.doi.org/10.1109/TCST.
2022.3172872.

[32] Ioannis P. A. Papadopoulos, Patrick E. Farrell, and Thomas M. Surowiec.
Computing multiple solutions of topology optimization problems. 2021. arXiv: 2004.
11797 [math.NA].

[33] FEniCS Project. The FEniCSx computing platform. https : / / fenicsproject . org/.
Accessed: 2023-09-22. 2021.

[34] Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. “Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations.” In: Journal of
Computational Physics 378 (2019), pp. 686–707. url: https://www.sciencedirect.
com/science/article/pii/S0021999118307125.

[35] Patrick J. Roache. “The Method of Manufactured Solutions for Code Verification.”
In: Computer Simulation Validation: Fundamental Concepts, Methodological
Frameworks, and Philosophical Perspectives. Ed. by Claus Beisbart and Nicole
J. Saam. Cham: Springer International Publishing, 2019, pp. 295–318. url: https:
//doi.org/10.1007/978-3-319-70766-2_12.

[36] Esteban Samaniego et al. “An energy approach to the solution of partial
differential equations in computational mechanics via machine learning: Concepts,
implementation and applications.” In: Computer Methods in Applied Mechanics
and Engineering 362 (2020), p. 112790. url: http://dx.doi.org/10.1016/j.cma.2019.
112790.

[37] Ole Sigmund and Kurt Maute. “Topology optimization approaches.” In: Structural
and Multidisciplinary Optimization 48 (2013), pp. 1031–1055. url: https://doi.org/
10.1007/s00158-013-0978-6.

[38] William S. Slaughter. “Constitutive Equations.” In: The Linearized Theory of
Elasticity. Birkhäuser, 2001, pp. 193–220. url: https: / /doi .org /10.1007/978- 1-
4612-0093-2.

[39] William S. Slaughter. “Forces and Stress.” In: The Linearized Theory of Elasticity.
Birkhäuser, 2001, pp. 157–192. url: https://doi.org/10.1007/978-1-4612-0093-2.

[40] William S. Slaughter. “Kinematics.” In: The Linearized Theory of Elasticity.
Birkhäuser, 2001, pp. 97–156. url: https://doi.org/10.1007/978-1-4612-0093-2.

77

https://doi.org/10.1007/978-3-642-33287-6
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3072
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3072
https://arxiv.org/abs/2209.13104
https://doi.org/10.1007/s00158-018-1994-3
http://dx.doi.org/10.1109/TCST.2022.3172872
http://dx.doi.org/10.1109/TCST.2022.3172872
https://arxiv.org/abs/2004.11797
https://arxiv.org/abs/2004.11797
https://fenicsproject.org/
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1007/978-3-319-70766-2_12
https://doi.org/10.1007/978-3-319-70766-2_12
http://dx.doi.org/10.1016/j.cma.2019.112790
http://dx.doi.org/10.1016/j.cma.2019.112790
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/978-1-4612-0093-2
https://doi.org/10.1007/978-1-4612-0093-2
https://doi.org/10.1007/978-1-4612-0093-2
https://doi.org/10.1007/978-1-4612-0093-2

Bibliography

[41] Jan. Sokolowski and Antoni Zochowski. “On the Topological Derivative in
Shape Optimization.” In: SIAM Journal on Control and Optimization 37 (1999),
pp. 1251–1272. url: https://doi.org/10.1137/S0363012997323230.

[42] Krister Svanberg. “The method of moving asymptotes—a new method for
structural optimization.” In: International Journal for Numerical Methods in
Engineering 24 (1987), pp. 359–373. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/nme.1620240207.

[43] Mumps Technologies. MUMPS: a parallel sparse direct solver. https : / / mumps -
solver.org/index.php. Accessed: 2024-02-24.

[44] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “On the eigenvector bias
of Fourier feature networks: From regression to solving multi-scale PDEs with
physics-informed neural networks.” In: Computer Methods in Applied Mechanics
and Engineering 384 (2021), p. 113938. url: https://www.sciencedirect.com/science/
article/pii/S0045782521002759.

[45] Rebekka V. Woldseth et al. “On the use of artificial neural networks in topology
optimisation.” In: Structural and Multidisciplinary Optimization 65 (2022), p. 294.
url: https://doi.org/10.1007/s00158-022-03347-1.

[46] Cheng A. Yan, Riccardo Vescovini, and Lorenzo Dozio. “A framework based
on physics-informed neural networks and extreme learning for the analysis of
composite structures.” In: Computers & Structures 265 (2022), p. 106761. url:
https://doi.org/10.1016/j.compstruc.2022.106761.

[47] Ji-Hong Zhu, Wei-Hong Zhang, and Liang Xia. “Topology Optimization in Aircraft
and Aerospace Structures Design.” In: Archives of Computational Methods in
Engineering 23 (2016), pp. 595–622. url: https: / /doi .org/10.1007/s11831- 015-
9151-2.

[48] Wenjie Zuo and Kazuhiro Saitou. “Multi-material topology optimization using
ordered SIMP interpolation.” In: Structural and Multidisciplinary Optimization 55
(2017), pp. 477–491. url: https://doi.org/10.1007/s00158-016-1513-3.

78

https://doi.org/10.1137/S0363012997323230
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620240207
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620240207
https://mumps-solver.org/index.php
https://mumps-solver.org/index.php
https://www.sciencedirect.com/science/article/pii/S0045782521002759
https://www.sciencedirect.com/science/article/pii/S0045782521002759
https://doi.org/10.1007/s00158-022-03347-1
https://doi.org/10.1016/j.compstruc.2022.106761
https://doi.org/10.1007/s11831-015-9151-2
https://doi.org/10.1007/s11831-015-9151-2
https://doi.org/10.1007/s00158-016-1513-3

Appendix A

Link to Our Source Code

The repository for the code developed for this thesis is available at https://github.com/
Emilinya/topomax. At the time of writing, the latest commit is 6031bb7.

79

https://github.com/Emilinya/topomax
https://github.com/Emilinya/topomax
https://github.com/Emilinya/topomax/tree/6031bb79977224bfb63493a9e777c41660875a01

Appendix A. Link to Our Source Code

80

Appendix B

Gradient Calculation

We want to show that the gradient of

ϕ(ρ) = 1
2

∫
Ω
r(ρ)||uρ||2 + µ||∇uρ||2 dx ,

where uρ is the solution to the Stokes equations with varying permeability, is

∇ϕ(ρ) = 1
2r

′(ρ)||uρ||2.

As this appendix is intended as a sketch of the calculation, we will proceed semi-formally
and comment on the potential functional analysis nuances at the end.

To calculate the gradient of ϕ, we use the directional derivative, defined as

lim
t→0

ϕ(ρ+ tδρ)− ϕ(ρ)
t

= lim
t→0

1
2t

∫
Ω

(
r(ρ+ tδρ)||ut||2 − r(ρ)||uρ||2

)
+µ
(
||∇ut||2 − ||∇uρ||2

)
dx ,

where ut = uρ+tδρ and δρ is some direction. Using the fact that

ϕ(ρ) = min
u∈Udiv

ψ(u; ρ),

we get that ψ(ut; ρ) ≥ ϕ(ρ) and ψ(uρ; ρ + tδρ) ≥ ϕ(ρ + tδρ). We therefore get the two
inequalities:

ϕ(ρ+ tδρ)− ϕ(ρ)
t

≤ 1
2t

∫
Ω

(
r(ρ+ tδρ)||uρ||2 − r(ρ)||uρ||2

)
+ µ

(
||∇uρ||2 − ||∇uρ||2

)
dx

= 1
2

∫
Ω

r(ρ+ tδρ)− r(ρ)
t

||uρ||2 dx ,

ϕ(ρ+ tδρ)− ϕ(ρ)
t

≥ 1
2t

∫
Ω

(
r(ρ+ tδρ)||ut||2 − r(ρ)||ut||2

)
+ µ

(
||∇ut||2 − ||∇ut||2

)
dx

= 1
2

∫
Ω

r(ρ+ tδρ)− r(ρ)
t

||ut||2 dx ,

To calculate the directional derivative of r, we use the Taylor expansion:

lim
t→0

r(ρ+ tδρ)− r(ρ)
t

= lim
t→0

r(ρ) + r′(ρ)tδρ+O(t2)− r(ρ)
t

= r′(ρ)δρ+ lim
t→0

O(t)

= r′(ρ)δρ.

(B.1)

81

Appendix B. Gradient Calculation

Assuming that ut converges to uρ in at least L2, we get

lim
t→0

1
2

∫
Ω

r(ρ+ tδρ)− r(ρ)
t

||uρ||2 dx = 1
2

∫
Ω
r′(ρ)||uρ||2δρdx

lim
t→0

1
2

∫
Ω

r(ρ+ tδρ)− r(ρ)
t

||ut||2 dx = 1
2

∫
Ω
r′(ρ)||uρ||2δρdx

The squeeze theorem then gives us the equality

lim
t→0

ϕ(ρ+ tδρ)− ϕ(ρ)
t

= 1
2

∫
Ω
r′(ρ)||uρ||2δρdx .

To get the gradient of ρ, we can use the fact that it is the Riesz representation of
the directional derivative, meaning it is the function ∇ϕ such that∫

Ω
∇ϕ(ρ)δρdx = lim

t→0

ϕ(ρ+ tδρ)− ϕ(ρ)
t

∀δρ ∈ L∞(Ω).

Clearly, this means ∇ϕ(ρ) = 1
2r

′(ρ)||uρ||2. □

Some comments on this calculation are as follows:

• Differentiating non-linear maps between Lp spaces as defined by the superposition
of polynomials or rational functions, as done in (B.1), is non-trivial in general.
However, our case provides enough structure that we can verify the sufficient
properties directly (see Appell and Zabrejko 1990, Goldberg, Kampowsky, and
Tröltzsch 1992).

• If ut goes to uρ only in L2, then it is essential that the directions δρ are taken in
L∞. Alternatively, if ut converges to uρ in a space of higher regularity, we could
take advantage of the Sobolev embedding theorem and use δρ in a less regular
space.

• The convergence analysis for ut to uρ is classical and can be done by appealing to
standard energy estimates for linear elliptic equations of second order.

82

Appendix C

Bugs in The DEM Source Code

While working with the source code provided by [24], we found two bugs.
The first one is a simple math error when calculating stress. The bug
happens in the Elastic2DGaussQuad function of the InternalEnergy class in
Sub_Functions/InternalEnergy.py. There, the stress is calculated as follows:

1 S_xx = self.E*(e_xx + self.nu*e_yy) / (1 - self.nu**2)
2 S_yy = self.E*(e_yy + self.nu*e_xx) / (1 - self.nu**2)
3 S_xy = self.E*e_xy / (1 + self.nu)

where we have made some small changes to improve readability. This formula comes
from the equation for the Cauchy stress tensor:

σ = E

(1 + ν)(1− 2ν)tr(ε)I + E

1 + ν
ε.

With this formula, you should get

1 S_xx = self.E*((1 - self.nu)*e_xx + self.nu*e_yy) / ((1 + self.nu)(1 - 2 * self.nu))
2 S_yy = self.E*((1 - self.nu)*e_yy + self.nu*e_xx) / ((1 + self.nu)(1 - 2 * self.nu))
3 S_xy = self.E*e_xy / (1 + self.nu)

The error that has occurred is a simple math error. The calculation in the source code
is what you get from the equation

σ = E

(1 + ν)(1− ν)tr(ε)I + E

1 + ν
ε,

that is, 1− ν was used instead of 1− 2ν.
The second bug is more subtle. While working on the code that calculated

the traction integral
∫

δΩ t · u dx, we noticed something weird. The integral
is calculated by the function lossFextEnergy of the IntegrationFext class in
Sub_Functions/IntegrationFext.py:

1 def lossFextEnergy(self, u,x, neuBC_coordinates, neuBC_values, neuBC_idx, dxdydz):
2 dx=dxdydz[0]
3 dy=dxdydz[1]
4 dxds=dx/2
5 dydt=dy/2
6

7 # J= np.array([[dxds,0],[0,dydt]])
8 # Jinv= np.linalg.inv(J)

83

Appendix C. Bugs in The DEM Source Code

9 # detJ= np.linalg.det(J)
10

11 traction_ID = 0
12 neuPt_u = u[neuBC_idx[traction_ID].cpu().numpy()]
13 W_ext = torch.einsum('ij,ij->i' , neuPt_u , neuBC_values[traction_ID]) * dx
14

15 W_ext[-1] = W_ext[-1] / 2
16 W_ext[0] = W_ext[0] / 2
17

18 FextEnergy = torch.sum(W_ext)
19 return FextEnergy

This function is a bit messy, but the most important part is W_ext. This is equal to
{t · ui∆x}, where i covers all spacial indices that lie in the region with non-zero traction.
There is an obvious bug here; the values are always multiplied by ∆x, even when
integrating vertically. This does not actually change the results for the two examples
we looked at as the short cantilever has ∆x = ∆y, so we do not count it as a bug. The
actual bug is on the next few lines, where the traction integral is computed with the
trapezoidal rule. What we noticed is that in the short cantilever example, W_ext only
has one element. This makes the trapezoidal rule invalid, and existing implementations
like torch.trapezoidal would return 0. The custom implementation does not return
0, it instead just divides the one value by 4 and returns it. This underestimates the
applied traction, and thus causes the objective to be much smaller than it should be.
Our implementation of the traction integral uses the points at the boundaries of the
traction region, which means we always use at least 2 points, and thus avoid this bug.

The reason why W_ext only has one value in the case of the short cantilever is actually
a result of floating point imprecision. The points that lie in the region of applied traction
are found with the condition

1 np.where(
2 (dom[:, 0] == Length)
3 & (dom[:, 1] >= Height/ 2. - Height / (Ny - 1) / 2.)
4 & (dom[:, 1] <= Height/ 2. + Height / (Ny - 1) / 2.)
5)

This should give two points, (w, h/2 − ∆y/2) and (w, h/2 + ∆y/2), but numeri-
cally, h/2 − (h/(Ny − 1))/2 = 2.4444444444444446, and the bottom point is at
(10, 2.4444444444444442). This means that the condition does not hold for the bot-
tom point, leaving just the top one. Fixing this is simple, you just need to subtract a
small value from the top condition and add a small value to the bottom condition. A
value of 10−10 is enough to actually get both points.

84

	Introduction
	Preliminary Results
	Notation
	The Weak Form
	The Energy Functional

	Introduction to Topology Optimization
	Topology Optimization of Elastic Materials
	Linear Elasticity
	Linear Elasticity with Varying Density
	Elasticity Optimization Examples

	Topology Optimization of Fluids
	Stokes Flow
	Stokes Flow with Varying Permeability
	Fluid Optimization Examples

	Methods
	Entropic Mirror Descent
	Finite Element Approach
	The Finite Element Method
	Linear Algebra Solvers

	Neural Network Approach
	Deep Neural Networks
	Physics-Informed Neural Networks
	The Deep Energy Method
	The DEM and Stokes Flow
	Numerical Integration

	Implementation
	src
	FEM_src
	DEM_src
	Testing

	Results and Comparisons
	Hyperparameters
	Results
	Comparison Indices
	Comparison
	Convergence
	Figures
	Objectives
	Speed
	Mesh Independence

	General Discussion

	Conclusion
	Link to Our Source Code
	Gradient Calculation
	Bugs in The DEM Source Code

